File size: 1,793 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestPointRCNN(unittest.TestCase):
def test_pointrcnn(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'PointRCNN')
DefaultScope.get_instance('test_pointrcnn', scope_name='mmdet3d')
setup_seed(0)
pointrcnn_cfg = get_detector_cfg(
'point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py')
model = MODELS.build(pointrcnn_cfg)
num_gt_instance = 2
packed_inputs = create_detector_inputs(
num_points=10101, num_gt_instance=num_gt_instance)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
torch.cuda.empty_cache()
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# save the memory
with torch.no_grad():
losses = model.forward(**data, mode='loss')
torch.cuda.empty_cache()
self.assertGreaterEqual(losses['rpn_bbox_loss'], 0)
self.assertGreaterEqual(losses['rpn_semantic_loss'], 0)
self.assertGreaterEqual(losses['loss_cls'], 0)
self.assertGreaterEqual(losses['loss_bbox'], 0)
self.assertGreaterEqual(losses['loss_corner'], 0)
|