File size: 5,093 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase

import numpy as np
import torch
from mmengine.structures import InstanceData

from mmdet3d.models.dense_heads import SMOKEMono3DHead
from mmdet3d.structures import CameraInstance3DBoxes


class TestSMOKEMono3DHead(TestCase):

    def test_smoke_mono3d_head_loss(self):
        """Tests SMOKE head loss and inference."""

        img_metas = [
            dict(
                cam2img=[[1260.8474446004698, 0.0, 807.968244525554, 40.1111],
                         [0.0, 1260.8474446004698, 495.3344268742088, 2.34422],
                         [0.0, 0.0, 1.0, 0.00333333], [0.0, 0.0, 0.0, 1.0]],
                scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
                pad_shape=[128, 128],
                trans_mat=np.array(
                    [[0.25, 0., 0.], [0., 0.25, 0], [0., 0., 1.]],
                    dtype=np.float32),
                affine_aug=False,
                box_type_3d=CameraInstance3DBoxes)
        ]

        smoke_mono3d_head = SMOKEMono3DHead(
            num_classes=3,
            in_channels=64,
            dim_channel=[3, 4, 5],
            ori_channel=[6, 7],
            stacked_convs=0,
            feat_channels=64,
            use_direction_classifier=False,
            diff_rad_by_sin=False,
            pred_attrs=False,
            pred_velo=False,
            dir_offset=0,
            strides=None,
            group_reg_dims=(8, ),
            cls_branch=(256, ),
            reg_branch=((256, ), ),
            num_attrs=0,
            bbox_code_size=7,
            dir_branch=(),
            attr_branch=(),
            bbox_coder=dict(
                type='SMOKECoder',
                base_depth=(28.01, 16.32),
                base_dims=((0.88, 1.73, 0.67), (1.78, 1.70, 0.58), (3.88, 1.63,
                                                                    1.53)),
                code_size=7),
            loss_cls=dict(type='mmdet.GaussianFocalLoss', loss_weight=1.0),
            loss_bbox=dict(
                type='mmdet.L1Loss', reduction='sum', loss_weight=1 / 300),
            loss_dir=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_attr=None,
            conv_bias=True,
            dcn_on_last_conv=False)

        # SMOKE head expects a single level of features per image
        feats = [torch.rand([1, 64, 32, 32], dtype=torch.float32)]

        # Test forward
        ret_dict = smoke_mono3d_head.forward(feats)

        self.assertEqual(
            len(ret_dict), 2, 'the length of forward feature should be 2')
        self.assertEqual(
            len(ret_dict[0]), 1, 'each feature should have 1 level')
        self.assertEqual(
            ret_dict[0][0].shape, torch.Size([1, 3, 32, 32]),
            'the fist level feature shape should be [1, 3, 32, 32]')

        # When truth is non-empty then all losses
        # should be nonzero for random inputs
        gt_instances_3d = InstanceData()
        gt_instances = InstanceData()

        gt_bboxes = torch.Tensor([[1.0, 2.0, 20.0, 40.0],
                                  [45.0, 50.0, 80.0, 70.1],
                                  [34.0, 39.0, 65.0, 64.0]])
        gt_bboxes_3d = CameraInstance3DBoxes(torch.rand([3, 7]), box_dim=7)
        gt_labels = torch.randint(0, 3, [3])
        gt_labels_3d = gt_labels
        centers_2d = torch.randint(0, 60, (3, 2))
        depths = torch.rand([3], dtype=torch.float32)

        gt_instances_3d.bboxes_3d = gt_bboxes_3d
        gt_instances_3d.labels_3d = gt_labels_3d
        gt_instances.bboxes = gt_bboxes
        gt_instances.labels = gt_labels
        gt_instances_3d.centers_2d = centers_2d
        gt_instances_3d.depths = depths

        gt_losses = smoke_mono3d_head.loss_by_feat(*ret_dict,
                                                   [gt_instances_3d],
                                                   [gt_instances], img_metas)

        gt_cls_loss = gt_losses['loss_cls'].item()
        gt_box_loss = gt_losses['loss_bbox'].item()

        self.assertGreater(gt_cls_loss, 0, 'cls loss should be positive')
        self.assertGreater(gt_box_loss, 0, 'bbox loss should be positive')

        # test get_results
        results_list = smoke_mono3d_head.predict_by_feat(*ret_dict, img_metas)
        self.assertEqual(
            len(results_list), 1, 'there should be one image results')
        results = results_list[0]
        pred_bboxes_3d = results.bboxes_3d
        pred_scores_3d = results.scores_3d
        pred_labels_3d = results.labels_3d

        self.assertEqual(
            pred_bboxes_3d.tensor.shape, torch.Size([100, 7]),
            'the shape of predicted 3d bboxes should be [100, 7]')
        self.assertEqual(
            pred_scores_3d.shape, torch.Size([100]),
            'the shape of predicted 3d bbox scores should be [100]')
        self.assertEqual(
            pred_labels_3d.shape, torch.Size([100]),
            'the shape of predicted 3d bbox labels should be [100]')