File size: 7,311 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase

import mmengine
import numpy as np
import torch
from mmengine.structures import InstanceData

from mmdet3d.models.dense_heads import FCOSMono3DHead
from mmdet3d.structures import CameraInstance3DBoxes


class TestFCOSMono3DHead(TestCase):

    def test_fcos_mono3d_head_loss(self):
        """Tests FCOS3D head loss and inference."""

        img_metas = [
            dict(
                cam2img=[[1260.8474446004698, 0.0, 807.968244525554],
                         [0.0, 1260.8474446004698, 495.3344268742088],
                         [0.0, 0.0, 1.0]],
                scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
                box_type_3d=CameraInstance3DBoxes)
        ]

        train_cfg = dict(
            allowed_border=0,
            code_weight=[1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05],
            pos_weight=-1,
            debug=False)

        test_cfg = dict(
            use_rotate_nms=True,
            nms_across_levels=False,
            nms_pre=1000,
            nms_thr=0.8,
            score_thr=0.05,
            min_bbox_size=0,
            max_per_img=200)

        train_cfg = mmengine.Config(train_cfg)
        test_cfg = mmengine.Config(test_cfg)

        fcos_mono3d_head = FCOSMono3DHead(
            num_classes=10,
            in_channels=32,
            stacked_convs=2,
            feat_channels=32,
            use_direction_classifier=True,
            diff_rad_by_sin=True,
            pred_attrs=True,
            pred_velo=True,
            dir_offset=0.7854,  # pi/4
            dir_limit_offset=0,
            strides=[8, 16, 32, 64, 128],
            group_reg_dims=(2, 1, 3, 1, 2),  # offset, depth, size, rot, velo
            cls_branch=(32, ),
            reg_branch=(
                (32, ),  # offset
                (32, ),  # depth
                (32, ),  # size
                (32, ),  # rot
                ()  # velo
            ),
            dir_branch=(32, ),
            attr_branch=(32, ),
            loss_cls=dict(
                type='mmdet.FocalLoss',
                use_sigmoid=True,
                gamma=2.0,
                alpha=0.25,
                loss_weight=1.0),
            loss_bbox=dict(
                type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
            loss_dir=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_attr=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_centerness=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=True,
                loss_weight=1.0),
            bbox_coder=dict(type='FCOS3DBBoxCoder', code_size=9),
            norm_on_bbox=True,
            centerness_on_reg=True,
            center_sampling=True,
            conv_bias=True,
            dcn_on_last_conv=False,
            train_cfg=train_cfg,
            test_cfg=test_cfg)

        # FCOS3D head expects a multiple levels of features per image
        feats = [
            torch.rand([1, 32, 116, 200], dtype=torch.float32),
            torch.rand([1, 32, 58, 100], dtype=torch.float32),
            torch.rand([1, 32, 29, 50], dtype=torch.float32),
            torch.rand([1, 32, 15, 25], dtype=torch.float32),
            torch.rand([1, 32, 8, 13], dtype=torch.float32)
        ]

        # Test forward
        ret_dict = fcos_mono3d_head.forward(feats)

        self.assertEqual(
            len(ret_dict), 5, 'the length of forward feature should be 5')
        self.assertEqual(
            len(ret_dict[0]), 5, 'each feature should have 5 levels')
        self.assertEqual(
            ret_dict[0][0].shape, torch.Size([1, 10, 116, 200]),
            'the fist level feature shape should be [1, 10, 116, 200]')

        # When truth is non-empty then all losses
        # should be nonzero for random inputs
        gt_instances_3d = InstanceData()
        gt_instances = InstanceData()

        gt_bboxes = torch.rand([3, 4], dtype=torch.float32)
        gt_bboxes_3d = CameraInstance3DBoxes(torch.rand([3, 9]), box_dim=9)
        gt_labels = torch.randint(0, 10, [3])
        gt_labels_3d = gt_labels
        centers_2d = torch.rand([3, 2], dtype=torch.float32)
        depths = torch.rand([3], dtype=torch.float32)

        attr_labels = torch.randint(0, 9, [3])

        gt_instances_3d.bboxes_3d = gt_bboxes_3d
        gt_instances_3d.labels_3d = gt_labels_3d
        gt_instances.bboxes = gt_bboxes
        gt_instances.labels = gt_labels
        gt_instances_3d.centers_2d = centers_2d
        gt_instances_3d.depths = depths
        gt_instances_3d.attr_labels = attr_labels

        gt_losses = fcos_mono3d_head.loss_by_feat(*ret_dict, [gt_instances_3d],
                                                  [gt_instances], img_metas)

        gt_cls_loss = gt_losses['loss_cls'].item()
        gt_siz_loss = gt_losses['loss_size'].item()
        gt_ctr_loss = gt_losses['loss_centerness'].item()
        gt_off_loss = gt_losses['loss_offset'].item()
        gt_dep_loss = gt_losses['loss_depth'].item()
        gt_rot_loss = gt_losses['loss_rotsin'].item()
        gt_vel_loss = gt_losses['loss_velo'].item()
        gt_dir_loss = gt_losses['loss_dir'].item()
        gt_atr_loss = gt_losses['loss_attr'].item()

        self.assertGreater(gt_cls_loss, 0, 'cls loss should be positive')
        self.assertGreater(gt_siz_loss, 0, 'size loss should be positive')
        self.assertGreater(gt_ctr_loss, 0,
                           'centerness loss should be positive')
        self.assertGreater(gt_off_loss, 0, 'offset loss should be positive')
        self.assertGreater(gt_dep_loss, 0, 'depth loss should be positive')
        self.assertGreater(gt_rot_loss, 0, 'rotsin loss should be positive')
        self.assertGreater(gt_vel_loss, 0, 'velocity loss should be positive')
        self.assertGreater(gt_dir_loss, 0, 'direction loss should be positive')
        self.assertGreater(gt_atr_loss, 0, 'attribue loss should be positive')

        # test get_results
        results_list_3d, results_list_2d = fcos_mono3d_head.predict_by_feat(
            *ret_dict, img_metas)
        self.assertEqual(len(results_list_3d), 1, 'batch size should be 1')
        self.assertEqual(results_list_2d, None,
                         'there is no 2d result in fcos3d')
        results = results_list_3d[0]
        pred_bboxes_3d = results.bboxes_3d
        pred_scores_3d = results.scores_3d
        pred_labels_3d = results.labels_3d
        pred_attr_labels = results.attr_labels
        self.assertEqual(
            pred_bboxes_3d.tensor.shape, torch.Size([200, 9]),
            'the shape of predicted 3d bboxes should be [200, 9]')
        self.assertEqual(
            pred_scores_3d.shape, torch.Size([200]),
            'the shape of predicted 3d bbox scores should be [200]')
        self.assertEqual(
            pred_labels_3d.shape, torch.Size([200]),
            'the shape of predicted 3d bbox labels should be [200]')
        self.assertEqual(
            pred_attr_labels.shape, torch.Size([200]),
            'the shape of predicted 3d bbox attribute labels should be [200]')