File size: 21,358 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR3D (https://github.com/WangYueFt/detr3d)
# Copyright (c) 2021 Wang, Yue
# ------------------------------------------------------------------------
# Modified from mmdetection3d (https://github.com/open-mmlab/mmdetection3d)
# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------

import warnings

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import (BaseTransformerLayer,
                                         TransformerLayerSequence)
from mmengine.model import BaseModule
from mmengine.model.weight_init import xavier_init

# from mmcv.utils import deprecated_api_warning
from mmdet3d.registry import MODELS, TASK_UTILS


@MODELS.register_module()
class PETRTransformer(BaseModule):
    """Implements the DETR transformer. Following the official DETR
    implementation, this module copy-paste from torch.nn.Transformer with
    modifications:

        * positional encodings are passed in MultiheadAttention
        * extra LN at the end of encoder is removed
        * decoder returns a stack of activations from all decoding layers
    See `paper: End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for details.
    Args:
        encoder (`mmcv.ConfigDict` | Dict): Config of
            TransformerEncoder. Defaults to None.
        decoder ((`mmcv.ConfigDict` | Dict)): Config of
            TransformerDecoder. Defaults to None
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Defaults to None.
    """

    def __init__(self, encoder=None, decoder=None, init_cfg=None, cross=False):
        super(PETRTransformer, self).__init__(init_cfg=init_cfg)
        if encoder is not None:
            self.encoder = MODELS.build(encoder)
        else:
            self.encoder = None
        self.decoder = MODELS.build(decoder)
        self.embed_dims = self.decoder.embed_dims
        self.cross = cross

    def init_weights(self):
        # follow the official DETR to init parameters
        for m in self.modules():
            if hasattr(m, 'weight') and m.weight.dim() > 1:
                xavier_init(m, distribution='uniform')
        self._is_init = True

    def forward(self, x, mask, query_embed, pos_embed, reg_branch=None):
        """Forward function for `Transformer`.
        Args:
            x (Tensor): Input query with shape [bs, c, h, w] where
                c = embed_dims.
            mask (Tensor): The key_padding_mask used for encoder and decoder,
                with shape [bs, h, w].
            query_embed (Tensor): The query embedding for decoder, with shape
                [num_query, c].
            pos_embed (Tensor): The positional encoding for encoder and
                decoder, with the same shape as `x`.
        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.
                - out_dec: Output from decoder. If return_intermediate_dec \
                      is True output has shape [num_dec_layers, bs,
                      num_query, embed_dims], else has shape [1, bs, \
                      num_query, embed_dims].
                - memory: Output results from encoder, with shape \
                      [bs, embed_dims, h, w].
        """
        bs, n, c, h, w = x.shape
        memory = x.permute(1, 3, 4, 0,
                           2).reshape(-1, bs,
                                      c)  # [bs, n, c, h, w] -> [n*h*w, bs, c]
        pos_embed = pos_embed.permute(1, 3, 4, 0, 2).reshape(
            -1, bs, c)  # [bs, n, c, h, w] -> [n*h*w, bs, c]
        query_embed = query_embed.unsqueeze(1).repeat(
            1, bs, 1)  # [num_query, dim] -> [num_query, bs, dim]
        mask = mask.view(bs, -1)  # [bs, n, h, w] -> [bs, n*h*w]
        target = torch.zeros_like(query_embed)

        # out_dec: [num_layers, num_query, bs, dim]
        out_dec = self.decoder(
            query=target,
            key=memory,
            value=memory,
            key_pos=pos_embed,
            query_pos=query_embed,
            key_padding_mask=mask,
            reg_branch=reg_branch,
        )
        out_dec = out_dec.transpose(1, 2)
        memory = memory.reshape(n, h, w, bs, c).permute(3, 0, 4, 1, 2)
        return out_dec, memory


@MODELS.register_module()
class PETRDNTransformer(BaseModule):
    """Implements the DETR transformer. Following the official DETR
    implementation, this module copy-paste from torch.nn.Transformer with
    modifications:

        * positional encodings are passed in MultiheadAttention
        * extra LN at the end of encoder is removed
        * decoder returns a stack of activations from all decoding layers
    See `paper: End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for details.
    Args:
        encoder (`mmcv.ConfigDict` | Dict): Config of
            TransformerEncoder. Defaults to None.
        decoder ((`mmcv.ConfigDict` | Dict)): Config of
            TransformerDecoder. Defaults to None
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Defaults to None.
    """

    def __init__(self, encoder=None, decoder=None, init_cfg=None, cross=False):
        super(PETRDNTransformer, self).__init__(init_cfg=init_cfg)
        if encoder is not None:
            self.encoder = MODELS.build(encoder)
        else:
            self.encoder = None
        self.decoder = MODELS.build(decoder)
        self.embed_dims = self.decoder.embed_dims
        self.cross = cross

    def init_weights(self):
        # follow the official DETR to init parameters
        for m in self.modules():
            if hasattr(m, 'weight') and m.weight.dim() > 1:
                xavier_init(m, distribution='uniform')
        self._is_init = True

    def forward(self,
                x,
                mask,
                query_embed,
                pos_embed,
                attn_masks=None,
                reg_branch=None):
        """Forward function for `Transformer`.
        Args:
            x (Tensor): Input query with shape [bs, c, h, w] where
                c = embed_dims.
            mask (Tensor): The key_padding_mask used for encoder and decoder,
                with shape [bs, h, w].
            query_embed (Tensor): The query embedding for decoder, with shape
                [num_query, c].
            pos_embed (Tensor): The positional encoding for encoder and
                decoder, with the same shape as `x`.
        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.
                - out_dec: Output from decoder. If return_intermediate_dec \
                      is True output has shape [num_dec_layers, bs,
                      num_query, embed_dims], else has shape [1, bs, \
                      num_query, embed_dims].
                - memory: Output results from encoder, with shape \
                      [bs, embed_dims, h, w].
        """
        bs, n, c, h, w = x.shape
        memory = x.permute(1, 3, 4, 0,
                           2).reshape(-1, bs,
                                      c)  # [bs, n, c, h, w] -> [n*h*w, bs, c]
        pos_embed = pos_embed.permute(1, 3, 4, 0, 2).reshape(
            -1, bs, c)  # [bs, n, c, h, w] -> [n*h*w, bs, c]
        query_embed = query_embed.transpose(
            0, 1)  # [num_query, dim] -> [num_query, bs, dim]
        mask = mask.view(bs, -1)  # [bs, n, h, w] -> [bs, n*h*w]
        target = torch.zeros_like(query_embed)
        # out_dec: [num_layers, num_query, bs, dim]
        out_dec = self.decoder(
            query=target,
            key=memory,
            value=memory,
            key_pos=pos_embed,
            query_pos=query_embed,
            key_padding_mask=mask,
            attn_masks=[attn_masks, None],
            reg_branch=reg_branch,
        )
        out_dec = out_dec.transpose(1, 2)
        memory = memory.reshape(n, h, w, bs, c).permute(3, 0, 4, 1, 2)
        return out_dec, memory


@MODELS.register_module()
class PETRTransformerDecoderLayer(BaseTransformerLayer):
    """Implements decoder layer in DETR transformer.

    Args:
        attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )):
            Configs for self_attention or cross_attention, the order
            should be consistent with it in `operation_order`. If it is
            a dict, it would be expand to the number of attention in
            `operation_order`.
        feedforward_channels (int): The hidden dimension for FFNs.
        ffn_dropout (float): Probability of an element to be zeroed
            in ffn. Default 0.0.
        operation_order (tuple[str]): The execution order of operation
            in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
            Default:None
        act_cfg (dict): The activation config for FFNs. Default: `LN`
        norm_cfg (dict): Config dict for normalization layer.
            Default: `LN`.
        ffn_num_fcs (int): The number of fully-connected layers in FFNs.
            Default:2.
    """

    def __init__(self,
                 attn_cfgs,
                 feedforward_channels,
                 ffn_dropout=0.0,
                 operation_order=None,
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_cfg=dict(type='LN'),
                 ffn_num_fcs=2,
                 with_cp=True,
                 **kwargs):
        super(PETRTransformerDecoderLayer, self).__init__(
            attn_cfgs=attn_cfgs,
            feedforward_channels=feedforward_channels,
            ffn_dropout=ffn_dropout,
            operation_order=operation_order,
            act_cfg=act_cfg,
            norm_cfg=norm_cfg,
            ffn_num_fcs=ffn_num_fcs,
            **kwargs)
        assert len(operation_order) == 6
        assert set(operation_order) == set(
            ['self_attn', 'norm', 'cross_attn', 'ffn'])
        self.use_checkpoint = with_cp

    def _forward(
        self,
        query,
        key=None,
        value=None,
        query_pos=None,
        key_pos=None,
        attn_masks=None,
        query_key_padding_mask=None,
        key_padding_mask=None,
    ):
        """Forward function for `TransformerCoder`.

        Returns:
            Tensor: forwarded results with shape [num_query, bs, embed_dims].
        """
        x = super(PETRTransformerDecoderLayer, self).forward(
            query,
            key=key,
            value=value,
            query_pos=query_pos,
            key_pos=key_pos,
            attn_masks=attn_masks,
            query_key_padding_mask=query_key_padding_mask,
            key_padding_mask=key_padding_mask,
        )

        return x

    def forward(self,
                query,
                key=None,
                value=None,
                query_pos=None,
                key_pos=None,
                attn_masks=None,
                query_key_padding_mask=None,
                key_padding_mask=None,
                **kwargs):
        """Forward function for `TransformerCoder`.

        Returns:
            Tensor: forwarded results with shape [num_query, bs, embed_dims].
        """

        if self.use_checkpoint and self.training:
            x = cp.checkpoint(
                self._forward,
                query,
                key,
                value,
                query_pos,
                key_pos,
                attn_masks,
                query_key_padding_mask,
                key_padding_mask,
            )
        else:
            x = self._forward(
                query,
                key=key,
                value=value,
                query_pos=query_pos,
                key_pos=key_pos,
                attn_masks=attn_masks,
                query_key_padding_mask=query_key_padding_mask,
                key_padding_mask=key_padding_mask)
        return x


@MODELS.register_module()
class PETRMultiheadAttention(BaseModule):
    """A wrapper for ``torch.nn.MultiheadAttention``.

    This module implements MultiheadAttention with identity connection,
    and positional encoding  is also passed as input.
    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        attn_drop (float): A Dropout layer on attn_output_weights.
            Default: 0.0.
        proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
            Default: 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        batch_first (bool): When it is True,  Key, Query and Value are shape of
            (batch, n, embed_dim), otherwise (n, batch, embed_dim).
             Default to False.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=dict(type='Dropout', drop_prob=0.),
                 init_cfg=None,
                 batch_first=False,
                 **kwargs):
        super(PETRMultiheadAttention, self).__init__(init_cfg)
        if 'dropout' in kwargs:
            warnings.warn(
                'The arguments `dropout` in MultiheadAttention '
                'has been deprecated, now you can separately '
                'set `attn_drop`(float), proj_drop(float), '
                'and `dropout_layer`(dict) ', DeprecationWarning)
            attn_drop = kwargs['dropout']
            dropout_layer['drop_prob'] = kwargs.pop('dropout')

        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.batch_first = batch_first

        self.attn = nn.MultiheadAttention(embed_dims, num_heads, attn_drop,
                                          **kwargs)

        self.proj_drop = nn.Dropout(proj_drop)
        self.dropout_layer = MODELS.build(
            dropout_layer) if dropout_layer else nn.Identity()

    # @deprecated_api_warning({'residual': 'identity'},
    #                         cls_name='MultiheadAttention')
    def forward(self,
                query,
                key=None,
                value=None,
                identity=None,
                query_pos=None,
                key_pos=None,
                attn_mask=None,
                key_padding_mask=None,
                **kwargs):
        """Forward function for `MultiheadAttention`.

        **kwargs allow passing a more general data flow when combining
        with other operations in `transformerlayer`.
        Args:
            query (Tensor): The input query with shape [num_queries, bs,
                embed_dims] if self.batch_first is False, else
                [bs, num_queries embed_dims].
            key (Tensor): The key tensor with shape [num_keys, bs,
                embed_dims] if self.batch_first is False, else
                [bs, num_keys, embed_dims] .
                If None, the ``query`` will be used. Defaults to None.
            value (Tensor): The value tensor with same shape as `key`.
                Same in `nn.MultiheadAttention.forward`. Defaults to None.
                If None, the `key` will be used.
            identity (Tensor): This tensor, with the same shape as x,
                will be used for the identity link.
                If None, `x` will be used. Defaults to None.
            query_pos (Tensor): The positional encoding for query, with
                the same shape as `x`. If not None, it will
                be added to `x` before forward function. Defaults to None.
            key_pos (Tensor): The positional encoding for `key`, with the
                same shape as `key`. Defaults to None. If not None, it will
                be added to `key` before forward function. If None, and
                `query_pos` has the same shape as `key`, then `query_pos`
                will be used for `key_pos`. Defaults to None.
            attn_mask (Tensor): ByteTensor mask with shape [num_queries,
                num_keys]. Same in `nn.MultiheadAttention.forward`.
                Defaults to None.
            key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
                Defaults to None.
        Returns:
            Tensor: forwarded results with shape
            [num_queries, bs, embed_dims]
            if self.batch_first is False, else
            [bs, num_queries embed_dims].
        """

        if key is None:
            key = query
        if value is None:
            value = key
        if identity is None:
            identity = query
        if key_pos is None:
            if query_pos is not None:
                # use query_pos if key_pos is not available
                if query_pos.shape == key.shape:
                    key_pos = query_pos
                else:
                    warnings.warn(f'position encoding of key is'
                                  f'missing in {self.__class__.__name__}.')
        if query_pos is not None:
            query = query + query_pos
        if key_pos is not None:
            key = key + key_pos

        # Because the dataflow('key', 'query', 'value') of
        # ``torch.nn.MultiheadAttention`` is (num_query, batch,
        # embed_dims), We should adjust the shape of dataflow from
        # batch_first (batch, num_query, embed_dims) to num_query_first
        # (num_query ,batch, embed_dims), and recover ``attn_output``
        # from num_query_first to batch_first.
        if self.batch_first:
            query = query.transpose(0, 1)
            key = key.transpose(0, 1)
            value = value.transpose(0, 1)

        out = self.attn(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            key_padding_mask=key_padding_mask)[0]

        if self.batch_first:
            out = out.transpose(0, 1)

        return identity + self.dropout_layer(self.proj_drop(out))


@MODELS.register_module()
class PETRTransformerEncoder(TransformerLayerSequence):
    """TransformerEncoder of DETR.

    Args:
        post_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`. Only used when `self.pre_norm` is `True`
    """

    def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs):
        super(PETRTransformerEncoder, self).__init__(*args, **kwargs)
        if post_norm_cfg is not None:
            self.post_norm = TASK_UTILS.build(
                post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None
        else:
            assert not self.pre_norm, f'Use prenorm in ' \
                                      f'{self.__class__.__name__},' \
                                      f'Please specify post_norm_cfg'
            self.post_norm = None

    def forward(self, *args, **kwargs):
        """Forward function for `TransformerCoder`.

        Returns:
            Tensor: forwarded results with shape [num_query, bs, embed_dims].
        """
        x = super(PETRTransformerEncoder, self).forward(*args, **kwargs)
        if self.post_norm is not None:
            x = self.post_norm(x)
        return x


@MODELS.register_module()
class PETRTransformerDecoder(TransformerLayerSequence):
    """Implements the decoder in DETR transformer.

    Args:
        return_intermediate (bool): Whether to return intermediate outputs.
        post_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`.
    """

    def __init__(self,
                 *args,
                 post_norm_cfg=dict(type='LN'),
                 return_intermediate=False,
                 **kwargs):

        super(PETRTransformerDecoder, self).__init__(*args, **kwargs)
        self.return_intermediate = return_intermediate
        if post_norm_cfg is not None:
            self.post_norm = build_norm_layer(post_norm_cfg,
                                              self.embed_dims)[1]
        else:
            self.post_norm = None

    def forward(self, query, *args, **kwargs):
        """Forward function for `TransformerDecoder`.
        Args:
            query (Tensor): Input query with shape
                `(num_query, bs, embed_dims)`.
        Returns:
            Tensor: Results with shape [1, num_query, bs, embed_dims] when
                return_intermediate is `False`, otherwise it has shape
                [num_layers, num_query, bs, embed_dims].
        """
        if not self.return_intermediate:
            x = super().forward(query, *args, **kwargs)
            if self.post_norm:
                x = self.post_norm(x)[None]
            return x

        intermediate = []
        for layer in self.layers:
            query = layer(query, *args, **kwargs)
            if self.return_intermediate:
                if self.post_norm is not None:
                    intermediate.append(self.post_norm(query))
                else:
                    intermediate.append(query)
        return torch.stack(intermediate)