File size: 16,885 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
from typing import Dict, List, Optional
import numpy as np
import torch
import torch.nn as nn
from mmdet.models.losses.utils import weighted_loss
from torch import Tensor
from mmdet3d.models.task_modules import CenterPointBBoxCoder
from mmdet3d.registry import MODELS, TASK_UTILS
from .ops.ingroup_inds.ingroup_inds_op import ingroup_inds
get_inner_win_inds_cuda = ingroup_inds
class PositionEmbeddingLearned(nn.Module):
"""Absolute pos embedding, learned."""
def __init__(self, input_channel, num_pos_feats):
super().__init__()
self.position_embedding_head = nn.Sequential(
nn.Linear(input_channel, num_pos_feats),
nn.BatchNorm1d(num_pos_feats), nn.ReLU(inplace=True),
nn.Linear(num_pos_feats, num_pos_feats))
def forward(self, xyz):
position_embedding = self.position_embedding_head(xyz)
return position_embedding
@torch.no_grad()
def get_window_coors(coors,
sparse_shape,
window_shape,
do_shift,
shift_list=None,
return_win_coors=False):
if len(window_shape) == 2:
win_shape_x, win_shape_y = window_shape
win_shape_z = sparse_shape[-1]
else:
win_shape_x, win_shape_y, win_shape_z = window_shape
sparse_shape_x, sparse_shape_y, sparse_shape_z = sparse_shape
assert sparse_shape_z < sparse_shape_x, 'Usually holds... in case of wrong order' # noqa: E501
max_num_win_x = int(np.ceil((sparse_shape_x / win_shape_x)) +
1) # plus one here to meet the needs of shift.
max_num_win_y = int(np.ceil((sparse_shape_y / win_shape_y)) +
1) # plus one here to meet the needs of shift.
max_num_win_z = int(np.ceil((sparse_shape_z / win_shape_z)) +
1) # plus one here to meet the needs of shift.
max_num_win_per_sample = max_num_win_x * max_num_win_y * max_num_win_z
if do_shift:
if shift_list is not None:
shift_x, shift_y, shift_z = shift_list[0], shift_list[
1], shift_list[2]
else:
shift_x, shift_y, shift_z = win_shape_x // 2, win_shape_y // 2, win_shape_z // 2 # noqa: E501
else:
if shift_list is not None:
shift_x, shift_y, shift_z = shift_list[0], shift_list[
1], shift_list[2]
else:
shift_x, shift_y, shift_z = win_shape_x, win_shape_y, win_shape_z
# compatibility between 2D window and 3D window
if sparse_shape_z == win_shape_z:
shift_z = 0
shifted_coors_x = coors[:, 3] + shift_x
shifted_coors_y = coors[:, 2] + shift_y
shifted_coors_z = coors[:, 1] + shift_z
win_coors_x = shifted_coors_x // win_shape_x
win_coors_y = shifted_coors_y // win_shape_y
win_coors_z = shifted_coors_z // win_shape_z
if len(window_shape) == 2:
assert (win_coors_z == 0).all()
batch_win_inds = coors[:, 0] * max_num_win_per_sample + \
win_coors_x * max_num_win_y * max_num_win_z + \
win_coors_y * max_num_win_z + win_coors_z
coors_in_win_x = shifted_coors_x % win_shape_x
coors_in_win_y = shifted_coors_y % win_shape_y
coors_in_win_z = shifted_coors_z % win_shape_z
coors_in_win = torch.stack(
[coors_in_win_z, coors_in_win_y, coors_in_win_x], dim=-1)
# coors_in_win = torch.stack([coors_in_win_x, coors_in_win_y], dim=-1)
if return_win_coors:
batch_win_coords = torch.stack([win_coors_z, win_coors_y, win_coors_x],
dim=-1)
return batch_win_inds, coors_in_win, batch_win_coords
return batch_win_inds, coors_in_win
def get_pooling_index(coors, sparse_shape, window_shape):
win_shape_x, win_shape_y, win_shape_z = window_shape
sparse_shape_x, sparse_shape_y, sparse_shape_z = sparse_shape
max_num_win_x = int(np.ceil((sparse_shape_x / win_shape_x)))
max_num_win_y = int(np.ceil((sparse_shape_y / win_shape_y)))
max_num_win_z = int(np.ceil((sparse_shape_z / win_shape_z)))
max_num_win_per_sample = max_num_win_x * max_num_win_y * max_num_win_z
coors_x = coors[:, 3]
coors_y = coors[:, 2]
coors_z = coors[:, 1]
win_coors_x = coors_x // win_shape_x
win_coors_y = coors_y // win_shape_y
win_coors_z = coors_z // win_shape_z
batch_win_inds = coors[:, 0] * max_num_win_per_sample + \
win_coors_x * max_num_win_y * max_num_win_z + \
win_coors_y * max_num_win_z + win_coors_z
coors_in_win_x = coors_x % win_shape_x
coors_in_win_y = coors_y % win_shape_y
coors_in_win_z = coors_z % win_shape_z
coors_in_win = torch.stack(
[coors_in_win_z, coors_in_win_y, coors_in_win_x], dim=-1)
index_in_win = coors_in_win_x * win_shape_y * win_shape_z + \
coors_in_win_y * win_shape_z + coors_in_win_z
batch_win_coords = torch.stack(
[coors[:, 0], win_coors_z, win_coors_y, win_coors_x], dim=-1)
return batch_win_inds, coors_in_win, index_in_win, batch_win_coords
def get_continous_inds(setnum_per_win):
'''
Args:
setnum_per_win (Tensor[int]): Number of sets assigned to each window
with shape (win_num).
Returns:
set_win_inds (Tensor[int]): Window indices of each set with shape
(set_num).
set_inds_in_win (Tensor[int]): Set indices inner window with shape
(set_num).
Examples:
setnum_per_win = torch.tensor([1, 2, 1, 3])
set_inds_in_win = get_continous_inds(setnum_per_win)
# we can get: set_inds_in_win = tensor([0, 0, 1, 0, 0, 1, 2])
'''
set_num = setnum_per_win.sum().item() # set_num = 7
setnum_per_win_cumsum = torch.cumsum(
setnum_per_win, dim=0)[:-1] # [1, 3, 4]
set_win_inds = torch.full((set_num, ), 0, device=setnum_per_win.device)
set_win_inds[setnum_per_win_cumsum] = 1 # [0, 1, 0, 1, 1, 0, 0]
set_win_inds = torch.cumsum(set_win_inds, dim=0) # [0, 1, 1, 2, 3, 3, 3]
roll_set_win_inds_left = torch.roll(set_win_inds,
-1) # [1, 1, 2, 3, 3, 3, 0]
diff = set_win_inds - roll_set_win_inds_left # [-1, 0, -1, -1, 0, 0, 3]
end_pos_mask = diff != 0
template = torch.ones_like(set_win_inds)
template[end_pos_mask] = (setnum_per_win -
1) * -1 # [ 0, 1, -1, 0, 1, 1, -2]
set_inds_in_win = torch.cumsum(template, dim=0) # [0, 1, 0, 0, 1, 2, 0]
set_inds_in_win[end_pos_mask] = setnum_per_win # [1, 1, 2, 1, 1, 2, 3]
set_inds_in_win = set_inds_in_win - 1 # [0, 0, 1, 0, 0, 1, 2]
return set_win_inds, set_inds_in_win
@TASK_UTILS.register_module()
class DSVTBBoxCoder(CenterPointBBoxCoder):
"""Bbox coder for DSVT.
Compared with `CenterPointBBoxCoder`, this coder contains IoU predictions
"""
def __init__(self, *args, **kwargs) -> None:
super(DSVTBBoxCoder, self).__init__(*args, **kwargs)
def decode(self,
heat: Tensor,
rot_sine: Tensor,
rot_cosine: Tensor,
hei: Tensor,
dim: Tensor,
vel: Tensor,
reg: Optional[Tensor] = None,
iou: Optional[Tensor] = None) -> List[Dict[str, Tensor]]:
"""
Args:
heat (torch.Tensor): Heatmap with the shape of [B, N, W, H].
rot_sine (torch.Tensor): Sine of rotation with the shape of
[B, 1, W, H].
rot_cosine (torch.Tensor): Cosine of rotation with the shape of
[B, 1, W, H].
hei (torch.Tensor): Height of the boxes with the shape
of [B, 1, W, H].
dim (torch.Tensor): Dim of the boxes with the shape of
[B, 1, W, H].
vel (torch.Tensor): Velocity with the shape of [B, 1, W, H].
reg (torch.Tensor, optional): Regression value of the boxes in
2D with the shape of [B, 2, W, H]. Default: None.
Returns:
list[dict]: Decoded boxes.
"""
batch, cat, _, _ = heat.size()
scores, inds, clses, ys, xs = self._topk(heat, K=self.max_num)
if reg is not None:
reg = self._transpose_and_gather_feat(reg, inds)
reg = reg.view(batch, self.max_num, 2)
xs = xs.view(batch, self.max_num, 1) + reg[:, :, 0:1]
ys = ys.view(batch, self.max_num, 1) + reg[:, :, 1:2]
else:
xs = xs.view(batch, self.max_num, 1) + 0.5
ys = ys.view(batch, self.max_num, 1) + 0.5
# rotation value and direction label
rot_sine = self._transpose_and_gather_feat(rot_sine, inds)
rot_sine = rot_sine.view(batch, self.max_num, 1)
rot_cosine = self._transpose_and_gather_feat(rot_cosine, inds)
rot_cosine = rot_cosine.view(batch, self.max_num, 1)
rot = torch.atan2(rot_sine, rot_cosine)
# height in the bev
hei = self._transpose_and_gather_feat(hei, inds)
hei = hei.view(batch, self.max_num, 1)
# dim of the box
dim = self._transpose_and_gather_feat(dim, inds)
dim = dim.view(batch, self.max_num, 3)
# class label
clses = clses.view(batch, self.max_num).float()
scores = scores.view(batch, self.max_num)
xs = xs.view(
batch, self.max_num,
1) * self.out_size_factor * self.voxel_size[0] + self.pc_range[0]
ys = ys.view(
batch, self.max_num,
1) * self.out_size_factor * self.voxel_size[1] + self.pc_range[1]
if vel is None: # KITTI FORMAT
final_box_preds = torch.cat([xs, ys, hei, dim, rot], dim=2)
else: # exist velocity, nuscene format
vel = self._transpose_and_gather_feat(vel, inds)
vel = vel.view(batch, self.max_num, 2)
final_box_preds = torch.cat([xs, ys, hei, dim, rot, vel], dim=2)
if iou is not None:
iou = self._transpose_and_gather_feat(iou, inds).view(
batch, self.max_num)
final_scores = scores
final_preds = clses
# use score threshold
if self.score_threshold is not None:
thresh_mask = final_scores > self.score_threshold
if self.post_center_range is not None:
self.post_center_range = torch.as_tensor(
self.post_center_range, device=heat.device)
mask = (final_box_preds[..., :3] >=
self.post_center_range[:3]).all(2)
mask &= (final_box_preds[..., :3] <=
self.post_center_range[3:]).all(2)
predictions_dicts = []
for i in range(batch):
cmask = mask[i, :]
if self.score_threshold:
cmask &= thresh_mask[i]
boxes3d = final_box_preds[i, cmask]
scores = final_scores[i, cmask]
labels = final_preds[i, cmask]
predictions_dict = {
'bboxes': boxes3d,
'scores': scores,
'labels': labels,
}
if iou is not None:
pred_iou = iou[i, cmask]
predictions_dict['iou'] = pred_iou
predictions_dicts.append(predictions_dict)
else:
raise NotImplementedError(
'Need to reorganize output as a batch, only '
'support post_center_range is not None for now!')
return predictions_dicts
def center_to_corner2d(center, dim):
corners_norm = torch.tensor(
[[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]],
device=dim.device).type_as(center) # (4, 2)
corners = dim.view([-1, 1, 2]) * corners_norm.view([1, 4, 2]) # (N, 4, 2)
corners = corners + center.view(-1, 1, 2)
return corners
@weighted_loss
def diou3d_loss(pred_boxes, gt_boxes, eps: float = 1e-7):
"""
modified from https://github.com/agent-sgs/PillarNet/blob/master/det3d/core/utils/center_utils.py # noqa
Args:
pred_boxes (N, 7):
gt_boxes (N, 7):
Returns:
Tensor: Distance-IoU Loss.
"""
assert pred_boxes.shape[0] == gt_boxes.shape[0]
qcorners = center_to_corner2d(pred_boxes[:, :2],
pred_boxes[:, 3:5]) # (N, 4, 2)
gcorners = center_to_corner2d(gt_boxes[:, :2], gt_boxes[:,
3:5]) # (N, 4, 2)
inter_max_xy = torch.minimum(qcorners[:, 2], gcorners[:, 2])
inter_min_xy = torch.maximum(qcorners[:, 0], gcorners[:, 0])
out_max_xy = torch.maximum(qcorners[:, 2], gcorners[:, 2])
out_min_xy = torch.minimum(qcorners[:, 0], gcorners[:, 0])
# calculate area
volume_pred_boxes = pred_boxes[:, 3] * pred_boxes[:, 4] * pred_boxes[:, 5]
volume_gt_boxes = gt_boxes[:, 3] * gt_boxes[:, 4] * gt_boxes[:, 5]
inter_h = torch.minimum(
pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5],
gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5]) - torch.maximum(
pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5],
gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5])
inter_h = torch.clamp(inter_h, min=0)
inter = torch.clamp((inter_max_xy - inter_min_xy), min=0)
volume_inter = inter[:, 0] * inter[:, 1] * inter_h
volume_union = volume_gt_boxes + volume_pred_boxes - volume_inter + eps
# boxes_iou3d_gpu(pred_boxes, gt_boxes)
inter_diag = torch.pow(gt_boxes[:, 0:3] - pred_boxes[:, 0:3], 2).sum(-1)
outer_h = torch.maximum(
gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5],
pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5]) - torch.minimum(
gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5],
pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5])
outer_h = torch.clamp(outer_h, min=0)
outer = torch.clamp((out_max_xy - out_min_xy), min=0)
outer_diag = outer[:, 0]**2 + outer[:, 1]**2 + outer_h**2 + eps
dious = volume_inter / volume_union - inter_diag / outer_diag
dious = torch.clamp(dious, min=-1.0, max=1.0)
loss = 1 - dious
return loss
@MODELS.register_module()
class DIoU3DLoss(nn.Module):
r"""3D bboxes Implementation of `Distance-IoU Loss: Faster and Better
Learning for Bounding Box Regression <https://arxiv.org/abs/1911.08287>`_.
Code is modified from https://github.com/Zzh-tju/DIoU.
Args:
eps (float): Epsilon to avoid log(0). Defaults to 1e-6.
reduction (str): Options are "none", "mean" and "sum".
Defaults to "mean".
loss_weight (float): Weight of loss. Defaults to 1.0.
"""
def __init__(self,
eps: float = 1e-6,
reduction: str = 'mean',
loss_weight: float = 1.0) -> None:
super().__init__()
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred: Tensor,
target: Tensor,
weight: Optional[Tensor] = None,
avg_factor: Optional[int] = None,
reduction_override: Optional[str] = None,
**kwargs) -> Tensor:
"""Forward function.
Args:
pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (Tensor): The learning target of the prediction,
shape (n, 4).
weight (Optional[Tensor], optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (Optional[int], optional): Average factor that is used
to average the loss. Defaults to None.
reduction_override (Optional[str], optional): The reduction method
used to override the original reduction method of the loss.
Defaults to None. Options are "none", "mean" and "sum".
Returns:
Tensor: Loss tensor.
"""
if weight is not None and not torch.any(weight > 0):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# giou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * diou3d_loss(
pred,
target,
weight,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss
|