File size: 9,797 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
_base_ = ['../../../configs/_base_/default_runtime.py']
custom_imports = dict(
    imports=['projects.CENet.cenet'], allow_failed_imports=False)

# For SemanticKitti we usually do 19-class segmentation.
# For labels_map we follow the uniform format of MMDetection & MMSegmentation
# i.e. we consider the unlabeled class as the last one, which is different
# from the original implementation of some methods e.g. Cylinder3D.
dataset_type = 'SemanticKittiDataset'
data_root = 'data/semantickitti/'
class_names = [
    'car', 'bicycle', 'motorcycle', 'truck', 'bus', 'person', 'bicyclist',
    'motorcyclist', 'road', 'parking', 'sidewalk', 'other-ground', 'building',
    'fence', 'vegetation', 'trunck', 'terrian', 'pole', 'traffic-sign'
]
labels_map = {
    0: 19,  # "unlabeled"
    1: 19,  # "outlier" mapped to "unlabeled" --------------mapped
    10: 0,  # "car"
    11: 1,  # "bicycle"
    13: 4,  # "bus" mapped to "other-vehicle" --------------mapped
    15: 2,  # "motorcycle"
    16: 4,  # "on-rails" mapped to "other-vehicle" ---------mapped
    18: 3,  # "truck"
    20: 4,  # "other-vehicle"
    30: 5,  # "person"
    31: 6,  # "bicyclist"
    32: 7,  # "motorcyclist"
    40: 8,  # "road"
    44: 9,  # "parking"
    48: 10,  # "sidewalk"
    49: 11,  # "other-ground"
    50: 12,  # "building"
    51: 13,  # "fence"
    52: 19,  # "other-structure" mapped to "unlabeled" ------mapped
    60: 8,  # "lane-marking" to "road" ---------------------mapped
    70: 14,  # "vegetation"
    71: 15,  # "trunk"
    72: 16,  # "terrain"
    80: 17,  # "pole"
    81: 18,  # "traffic-sign"
    99: 19,  # "other-object" to "unlabeled" ----------------mapped
    252: 0,  # "moving-car" to "car" ------------------------mapped
    253: 6,  # "moving-bicyclist" to "bicyclist" ------------mapped
    254: 5,  # "moving-person" to "person" ------------------mapped
    255: 7,  # "moving-motorcyclist" to "motorcyclist" ------mapped
    256: 4,  # "moving-on-rails" mapped to "other-vehic------mapped
    257: 4,  # "moving-bus" mapped to "other-vehicle" -------mapped
    258: 3,  # "moving-truck" to "truck" --------------------mapped
    259: 4  # "moving-other"-vehicle to "other-vehicle"-----mapped
}

metainfo = dict(
    classes=class_names, seg_label_mapping=labels_map, max_label=259)

input_modality = dict(use_lidar=True, use_camera=False)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/semantickitti/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_seg_3d=True,
        seg_3d_dtype='np.int32',
        seg_offset=2**16,
        dataset_type='semantickitti',
        backend_args=backend_args),
    dict(type='PointSegClassMapping'),
    dict(type='PointSample', num_points=0.9),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-3.1415929, 3.1415929],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0.1, 0.1, 0.1],
    ),
    dict(
        type='SemkittiRangeView',
        H=64,
        W=512,
        fov_up=3.0,
        fov_down=-25.0,
        means=(11.71279, -0.1023471, 0.4952, -1.0545, 0.2877),
        stds=(10.24, 12.295865, 9.4287, 0.8643, 0.1450),
        ignore_index=19),
    dict(type='Pack3DDetInputs', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_seg_3d=True,
        seg_3d_dtype='np.int32',
        seg_offset=2**16,
        dataset_type='semantickitti',
        backend_args=backend_args),
    dict(type='PointSegClassMapping'),
    dict(
        type='SemkittiRangeView',
        H=64,
        W=512,
        fov_up=3.0,
        fov_down=-25.0,
        means=(11.71279, -0.1023471, 0.4952, -1.0545, 0.2877),
        stds=(10.24, 12.295865, 9.4287, 0.8643, 0.1450),
        ignore_index=19),
    dict(
        type='Pack3DDetInputs',
        keys=['img'],
        meta_keys=('proj_x', 'proj_y', 'proj_range', 'unproj_range'))
]

train_dataloader = dict(
    batch_size=4,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='semantickitti_infos_train.pkl',
        pipeline=train_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        ignore_index=19,
        backend_args=backend_args))
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='semantickitti_infos_val.pkl',
        pipeline=test_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        ignore_index=19,
        test_mode=True,
        backend_args=backend_args))
test_dataloader = val_dataloader

val_evaluator = dict(type='SegMetric')
test_evaluator = val_evaluator

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')

model = dict(
    type='RangeImageSegmentor',
    data_preprocessor=dict(type='Det3DDataPreprocessor'),
    backbone=dict(
        type='CENet',
        in_channels=5,
        stem_channels=128,
        num_stages=4,
        stage_blocks=(3, 4, 6, 3),
        out_channels=(128, 128, 128, 128),
        fuse_channels=(256, 128),
        strides=(1, 2, 2, 2),
        dilations=(1, 1, 1, 1),
        act_cfg=dict(type='HSwish', inplace=True)),
    decode_head=dict(
        type='RangeImageHead',
        channels=128,
        num_classes=20,
        dropout_ratio=0,
        loss_ce=dict(
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=False,
            class_weight=None,
            loss_weight=1.0),
        loss_lovasz=dict(type='LovaszLoss', loss_weight=1.5, reduction='none'),
        loss_boundary=dict(type='BoundaryLoss', loss_weight=1.0),
        conv_seg_kernel_size=1,
        ignore_index=19),
    auxiliary_head=[
        dict(
            type='RangeImageHead',
            channels=128,
            num_classes=20,
            dropout_ratio=0,
            loss_ce=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=False,
                class_weight=None,
                loss_weight=1.0),
            loss_lovasz=dict(
                type='LovaszLoss', loss_weight=1.5, reduction='none'),
            loss_boundary=dict(type='BoundaryLoss', loss_weight=1.0),
            conv_seg_kernel_size=1,
            ignore_index=19,
            indices=2),
        dict(
            type='RangeImageHead',
            channels=128,
            num_classes=20,
            dropout_ratio=0,
            loss_ce=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=False,
                class_weight=None,
                loss_weight=1.0),
            loss_lovasz=dict(
                type='LovaszLoss', loss_weight=1.5, reduction='none'),
            loss_boundary=dict(type='BoundaryLoss', loss_weight=1.0),
            conv_seg_kernel_size=1,
            ignore_index=19,
            indices=3),
        dict(
            type='RangeImageHead',
            channels=128,
            num_classes=20,
            dropout_ratio=0,
            loss_ce=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=False,
                class_weight=None,
                loss_weight=1.0),
            loss_lovasz=dict(
                type='LovaszLoss', loss_weight=1.5, reduction='none'),
            loss_boundary=dict(type='BoundaryLoss', loss_weight=1.0),
            conv_seg_kernel_size=1,
            ignore_index=19,
            indices=4)
    ],
    train_cfg=None,
    test_cfg=dict(use_knn=True, knn=7, search=7, sigma=1.0, cutoff=2.0))

# optimizer
# This schedule is mainly used on Semantickitti dataset in segmentation task
optim_wrapper = dict(
    type='AmpOptimWrapper',
    loss_scale='dynamic',
    optimizer=dict(
        type='AdamW',
        lr=0.04,
        betas=(0.9, 0.999),
        weight_decay=(0.01),
        eps=0.000005))

param_scheduler = [
    dict(
        type='OneCycleLR',
        total_steps=50,
        by_epoch=True,
        eta_max=0.0025,
        pct_start=0.2,
        div_factor=25.0,
        final_div_factor=100.0,
        convert_to_iter_based=True)
]

# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=50, val_interval=1)
val_cfg = dict()
test_cfg = dict()

# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (4 GPUs) x (4 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1))