File size: 10,838 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from collections import OrderedDict
from copy import deepcopy
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
import torch.distributed as dist
from mmengine.utils import is_list_of
from torch import Tensor
from torch.nn import functional as F

from mmdet3d.models import Base3DDetector
from mmdet3d.registry import MODELS
from mmdet3d.structures import Det3DDataSample
from mmdet3d.utils import OptConfigType, OptMultiConfig, OptSampleList
from .ops import Voxelization


@MODELS.register_module()
class BEVFusion(Base3DDetector):

    def __init__(
        self,
        data_preprocessor: OptConfigType = None,
        pts_voxel_encoder: Optional[dict] = None,
        pts_middle_encoder: Optional[dict] = None,
        fusion_layer: Optional[dict] = None,
        img_backbone: Optional[dict] = None,
        pts_backbone: Optional[dict] = None,
        view_transform: Optional[dict] = None,
        img_neck: Optional[dict] = None,
        pts_neck: Optional[dict] = None,
        bbox_head: Optional[dict] = None,
        init_cfg: OptMultiConfig = None,
        seg_head: Optional[dict] = None,
        **kwargs,
    ) -> None:
        voxelize_cfg = data_preprocessor.pop('voxelize_cfg')
        super().__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)

        self.voxelize_reduce = voxelize_cfg.pop('voxelize_reduce')
        self.pts_voxel_layer = Voxelization(**voxelize_cfg)

        self.pts_voxel_encoder = MODELS.build(pts_voxel_encoder)

        self.img_backbone = MODELS.build(
            img_backbone) if img_backbone is not None else None
        self.img_neck = MODELS.build(
            img_neck) if img_neck is not None else None
        self.view_transform = MODELS.build(
            view_transform) if view_transform is not None else None
        self.pts_middle_encoder = MODELS.build(pts_middle_encoder)

        self.fusion_layer = MODELS.build(
            fusion_layer) if fusion_layer is not None else None

        self.pts_backbone = MODELS.build(pts_backbone)
        self.pts_neck = MODELS.build(pts_neck)

        self.bbox_head = MODELS.build(bbox_head)

        self.init_weights()

    def _forward(self,
                 batch_inputs: Tensor,
                 batch_data_samples: OptSampleList = None):
        """Network forward process.

        Usually includes backbone, neck and head forward without any post-
        processing.
        """
        pass

    def parse_losses(
        self, losses: Dict[str, torch.Tensor]
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        """Parses the raw outputs (losses) of the network.

        Args:
            losses (dict): Raw output of the network, which usually contain
                losses and other necessary information.

        Returns:
            tuple[Tensor, dict]: There are two elements. The first is the
            loss tensor passed to optim_wrapper which may be a weighted sum
            of all losses, and the second is log_vars which will be sent to
            the logger.
        """
        log_vars = []
        for loss_name, loss_value in losses.items():
            if isinstance(loss_value, torch.Tensor):
                log_vars.append([loss_name, loss_value.mean()])
            elif is_list_of(loss_value, torch.Tensor):
                log_vars.append(
                    [loss_name,
                     sum(_loss.mean() for _loss in loss_value)])
            else:
                raise TypeError(
                    f'{loss_name} is not a tensor or list of tensors')

        loss = sum(value for key, value in log_vars if 'loss' in key)
        log_vars.insert(0, ['loss', loss])
        log_vars = OrderedDict(log_vars)  # type: ignore

        for loss_name, loss_value in log_vars.items():
            # reduce loss when distributed training
            if dist.is_available() and dist.is_initialized():
                loss_value = loss_value.data.clone()
                dist.all_reduce(loss_value.div_(dist.get_world_size()))
            log_vars[loss_name] = loss_value.item()

        return loss, log_vars  # type: ignore

    def init_weights(self) -> None:
        if self.img_backbone is not None:
            self.img_backbone.init_weights()

    @property
    def with_bbox_head(self):
        """bool: Whether the detector has a box head."""
        return hasattr(self, 'bbox_head') and self.bbox_head is not None

    @property
    def with_seg_head(self):
        """bool: Whether the detector has a segmentation head.
        """
        return hasattr(self, 'seg_head') and self.seg_head is not None

    def extract_img_feat(
        self,
        x,
        points,
        lidar2image,
        camera_intrinsics,
        camera2lidar,
        img_aug_matrix,
        lidar_aug_matrix,
        img_metas,
    ) -> torch.Tensor:
        B, N, C, H, W = x.size()
        x = x.view(B * N, C, H, W).contiguous()

        x = self.img_backbone(x)
        x = self.img_neck(x)

        if not isinstance(x, torch.Tensor):
            x = x[0]

        BN, C, H, W = x.size()
        x = x.view(B, int(BN / B), C, H, W)

        with torch.autocast(device_type='cuda', dtype=torch.float32):
            x = self.view_transform(
                x,
                points,
                lidar2image,
                camera_intrinsics,
                camera2lidar,
                img_aug_matrix,
                lidar_aug_matrix,
                img_metas,
            )
        return x

    def extract_pts_feat(self, batch_inputs_dict) -> torch.Tensor:
        points = batch_inputs_dict['points']
        with torch.autocast('cuda', enabled=False):
            points = [point.float() for point in points]
            feats, coords, sizes = self.voxelize(points)
            batch_size = coords[-1, 0] + 1
        x = self.pts_middle_encoder(feats, coords, batch_size)
        return x

    @torch.no_grad()
    def voxelize(self, points):
        feats, coords, sizes = [], [], []
        for k, res in enumerate(points):
            ret = self.pts_voxel_layer(res)
            if len(ret) == 3:
                # hard voxelize
                f, c, n = ret
            else:
                assert len(ret) == 2
                f, c = ret
                n = None
            feats.append(f)
            coords.append(F.pad(c, (1, 0), mode='constant', value=k))
            if n is not None:
                sizes.append(n)

        feats = torch.cat(feats, dim=0)
        coords = torch.cat(coords, dim=0)
        if len(sizes) > 0:
            sizes = torch.cat(sizes, dim=0)
            if self.voxelize_reduce:
                feats = feats.sum(
                    dim=1, keepdim=False) / sizes.type_as(feats).view(-1, 1)
                feats = feats.contiguous()

        return feats, coords, sizes

    def predict(self, batch_inputs_dict: Dict[str, Optional[Tensor]],
                batch_data_samples: List[Det3DDataSample],
                **kwargs) -> List[Det3DDataSample]:
        """Forward of testing.

        Args:
            batch_inputs_dict (dict): The model input dict which include
                'points' keys.

                - points (list[torch.Tensor]): Point cloud of each sample.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`.

        Returns:
            list[:obj:`Det3DDataSample`]: Detection results of the
            input sample. Each Det3DDataSample usually contain
            'pred_instances_3d'. And the ``pred_instances_3d`` usually
            contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
                (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
                (num_instances, ).
            - bbox_3d (:obj:`BaseInstance3DBoxes`): Prediction of bboxes,
                contains a tensor with shape (num_instances, 7).
        """
        batch_input_metas = [item.metainfo for item in batch_data_samples]
        feats = self.extract_feat(batch_inputs_dict, batch_input_metas)

        if self.with_bbox_head:
            outputs = self.bbox_head.predict(feats, batch_input_metas)

        res = self.add_pred_to_datasample(batch_data_samples, outputs)

        return res

    def extract_feat(
        self,
        batch_inputs_dict,
        batch_input_metas,
        **kwargs,
    ):
        imgs = batch_inputs_dict.get('imgs', None)
        points = batch_inputs_dict.get('points', None)
        features = []
        if imgs is not None:
            imgs = imgs.contiguous()
            lidar2image, camera_intrinsics, camera2lidar = [], [], []
            img_aug_matrix, lidar_aug_matrix = [], []
            for i, meta in enumerate(batch_input_metas):
                lidar2image.append(meta['lidar2img'])
                camera_intrinsics.append(meta['cam2img'])
                camera2lidar.append(meta['cam2lidar'])
                img_aug_matrix.append(meta.get('img_aug_matrix', np.eye(4)))
                lidar_aug_matrix.append(
                    meta.get('lidar_aug_matrix', np.eye(4)))

            lidar2image = imgs.new_tensor(np.asarray(lidar2image))
            camera_intrinsics = imgs.new_tensor(np.array(camera_intrinsics))
            camera2lidar = imgs.new_tensor(np.asarray(camera2lidar))
            img_aug_matrix = imgs.new_tensor(np.asarray(img_aug_matrix))
            lidar_aug_matrix = imgs.new_tensor(np.asarray(lidar_aug_matrix))
            img_feature = self.extract_img_feat(imgs, deepcopy(points),
                                                lidar2image, camera_intrinsics,
                                                camera2lidar, img_aug_matrix,
                                                lidar_aug_matrix,
                                                batch_input_metas)
            features.append(img_feature)
        pts_feature = self.extract_pts_feat(batch_inputs_dict)
        features.append(pts_feature)

        if self.fusion_layer is not None:
            x = self.fusion_layer(features)
        else:
            assert len(features) == 1, features
            x = features[0]

        x = self.pts_backbone(x)
        x = self.pts_neck(x)

        return x

    def loss(self, batch_inputs_dict: Dict[str, Optional[Tensor]],
             batch_data_samples: List[Det3DDataSample],
             **kwargs) -> List[Det3DDataSample]:
        batch_input_metas = [item.metainfo for item in batch_data_samples]
        feats = self.extract_feat(batch_inputs_dict, batch_input_metas)

        losses = dict()
        if self.with_bbox_head:
            bbox_loss = self.bbox_head.loss(feats, batch_data_samples)

        losses.update(bbox_loss)

        return losses