File size: 50,157 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
import os
import sys
import time
from typing import List, Optional, Sequence, Tuple, Union

import matplotlib.pyplot as plt
import mmcv
import numpy as np
from matplotlib.collections import PatchCollection
from matplotlib.patches import PathPatch
from matplotlib.path import Path
from mmdet.visualization import DetLocalVisualizer, get_palette
from mmengine.dist import master_only
from mmengine.logging import print_log
from mmengine.structures import InstanceData
from mmengine.visualization import Visualizer as MMENGINE_Visualizer
from mmengine.visualization.utils import (check_type, color_val_matplotlib,
                                          tensor2ndarray)
from torch import Tensor

from mmdet3d.registry import VISUALIZERS
from mmdet3d.structures import (BaseInstance3DBoxes, Box3DMode,
                                CameraInstance3DBoxes, Coord3DMode,
                                DepthInstance3DBoxes, DepthPoints,
                                Det3DDataSample, LiDARInstance3DBoxes,
                                PointData, points_cam2img)
from .vis_utils import (proj_camera_bbox3d_to_img, proj_depth_bbox3d_to_img,
                        proj_lidar_bbox3d_to_img, to_depth_mode)

try:
    import open3d as o3d
    from open3d import geometry
    from open3d.visualization import Visualizer
except ImportError:
    o3d = geometry = Visualizer = None


@VISUALIZERS.register_module()
class Det3DLocalVisualizer(DetLocalVisualizer):
    """MMDetection3D Local Visualizer.

    - 3D detection and segmentation drawing methods

      - draw_bboxes_3d: draw 3D bounding boxes on point clouds
      - draw_proj_bboxes_3d: draw projected 3D bounding boxes on image
      - draw_seg_mask: draw segmentation mask via per-point colorization

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
        points (np.ndarray, optional): Points to visualize with shape (N, 3+C).
            Defaults to None.
        image (np.ndarray, optional): The origin image to draw. The format
            should be RGB. Defaults to None.
        pcd_mode (int): The point cloud mode (coordinates): 0 represents LiDAR,
            1 represents CAMERA, 2 represents Depth. Defaults to 0.
        vis_backends (List[dict], optional): Visual backend config list.
            Defaults to None.
        save_dir (str, optional): Save file dir for all storage backends.
            If it is None, the backend storage will not save any data.
            Defaults to None.
        bbox_color (str or Tuple[int], optional): Color of bbox lines.
            The tuple of color should be in BGR order. Defaults to None.
        text_color (str or Tuple[int]): Color of texts. The tuple of color
            should be in BGR order. Defaults to (200, 200, 200).
        mask_color (str or Tuple[int], optional): Color of masks. The tuple of
            color should be in BGR order. Defaults to None.
        line_width (int or float): The linewidth of lines. Defaults to 3.
        frame_cfg (dict): The coordinate frame config while Open3D
            visualization initialization.
            Defaults to dict(size=1, origin=[0, 0, 0]).
        alpha (int or float): The transparency of bboxes or mask.
            Defaults to 0.8.
        multi_imgs_col (int): The number of columns in arrangement when showing
            multi-view images.

    Examples:
        >>> import numpy as np
        >>> import torch
        >>> from mmengine.structures import InstanceData
        >>> from mmdet3d.structures import (DepthInstance3DBoxes
        ...                                 Det3DDataSample)
        >>> from mmdet3d.visualization import Det3DLocalVisualizer

        >>> det3d_local_visualizer = Det3DLocalVisualizer()
        >>> image = np.random.randint(0, 256, size=(10, 12, 3)).astype('uint8')
        >>> points = np.random.rand(1000, 3)
        >>> gt_instances_3d = InstanceData()
        >>> gt_instances_3d.bboxes_3d = DepthInstance3DBoxes(
        ...     torch.rand((5, 7)))
        >>> gt_instances_3d.labels_3d = torch.randint(0, 2, (5,))
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_instances_3d = gt_instances_3d
        >>> data_input = dict(img=image, points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
        ...                                       gt_det3d_data_sample)

        >>> from mmdet3d.structures import PointData
        >>> det3d_local_visualizer = Det3DLocalVisualizer()
        >>> points = np.random.rand(1000, 3)
        >>> gt_pts_seg = PointData()
        >>> gt_pts_seg.pts_semantic_mask = torch.randint(0, 10, (1000, ))
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_pts_seg = gt_pts_seg
        >>> data_input = dict(points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
        ...                                       gt_det3d_data_sample,
        ...                                       vis_task='lidar_seg')
    """

    def __init__(
        self,
        name: str = 'visualizer',
        points: Optional[np.ndarray] = None,
        image: Optional[np.ndarray] = None,
        pcd_mode: int = 0,
        vis_backends: Optional[List[dict]] = None,
        save_dir: Optional[str] = None,
        bbox_color: Optional[Union[str, Tuple[int]]] = None,
        text_color: Union[str, Tuple[int]] = (200, 200, 200),
        mask_color: Optional[Union[str, Tuple[int]]] = None,
        line_width: Union[int, float] = 3,
        frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
        alpha: Union[int, float] = 0.8,
        multi_imgs_col: int = 3,
        fig_show_cfg: dict = dict(figsize=(18, 12))
    ) -> None:
        super().__init__(
            name=name,
            image=image,
            vis_backends=vis_backends,
            save_dir=save_dir,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            line_width=line_width,
            alpha=alpha)
        if points is not None:
            self.set_points(points, pcd_mode=pcd_mode, frame_cfg=frame_cfg)
        self.multi_imgs_col = multi_imgs_col
        self.fig_show_cfg.update(fig_show_cfg)

        self.flag_pause = False
        self.flag_next = False
        self.flag_exit = False

    def _clear_o3d_vis(self) -> None:
        """Clear open3d vis."""

        if hasattr(self, 'o3d_vis'):
            del self.o3d_vis
            del self.points_colors
            del self.view_control
            if hasattr(self, 'pcd'):
                del self.pcd

    def _initialize_o3d_vis(self, show=True) -> Visualizer:
        """Initialize open3d vis according to frame_cfg.

        Args:
            frame_cfg (dict): The config to create coordinate frame in open3d
                vis.

        Returns:
            :obj:`o3d.visualization.Visualizer`: Created open3d vis.
        """
        if o3d is None or geometry is None:
            raise ImportError(
                'Please run "pip install open3d" to install open3d first.')
        glfw_key_escape = 256  # Esc
        glfw_key_space = 32  # Space
        glfw_key_right = 262  # Right
        o3d_vis = o3d.visualization.VisualizerWithKeyCallback()
        o3d_vis.register_key_callback(glfw_key_escape, self.escape_callback)
        o3d_vis.register_key_action_callback(glfw_key_space,
                                             self.space_action_callback)
        o3d_vis.register_key_callback(glfw_key_right, self.right_callback)
        if os.environ.get('DISPLAY', None) is not None and show:
            o3d_vis.create_window()
            self.view_control = o3d_vis.get_view_control()
        return o3d_vis

    @master_only
    def set_points(self,
                   points: np.ndarray,
                   pcd_mode: int = 0,
                   vis_mode: str = 'replace',
                   frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
                   points_color: Tuple[float] = (0.8, 0.8, 0.8),
                   points_size: int = 2,
                   mode: str = 'xyz') -> None:
        """Set the point cloud to draw.

        Args:
            points (np.ndarray): Points to visualize with shape (N, 3+C).
            pcd_mode (int): The point cloud mode (coordinates): 0 represents
                LiDAR, 1 represents CAMERA, 2 represents Depth. Defaults to 0.
            vis_mode (str): The visualization mode in Open3D:

                - 'replace': Replace the existing point cloud with input point
                  cloud.
                - 'add': Add input point cloud into existing point cloud.

                Defaults to 'replace'.
            frame_cfg (dict): The coordinate frame config for Open3D
                visualization initialization.
                Defaults to dict(size=1, origin=[0, 0, 0]).
            points_color (Tuple[float]): The color of points.
                Defaults to (1, 1, 1).
            points_size (int): The size of points to show on visualizer.
                Defaults to 2.
            mode (str): Indicate type of the input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
        """
        assert points is not None
        assert vis_mode in ('replace', 'add')
        check_type('points', points, np.ndarray)

        if not hasattr(self, 'o3d_vis'):
            self.o3d_vis = self._initialize_o3d_vis()

        # for now we convert points into depth mode for visualization
        if pcd_mode != Coord3DMode.DEPTH:
            points = Coord3DMode.convert(points, pcd_mode, Coord3DMode.DEPTH)

        if hasattr(self, 'pcd') and vis_mode != 'add':
            self.o3d_vis.remove_geometry(self.pcd)

        # set points size in Open3D
        render_option = self.o3d_vis.get_render_option()
        if render_option is not None:
            render_option.point_size = points_size
            render_option.background_color = np.asarray([0, 0, 0])

        points = points.copy()
        pcd = geometry.PointCloud()
        if mode == 'xyz':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = np.tile(
                np.array(points_color), (points.shape[0], 1))
        elif mode == 'xyzrgb':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = points[:, 3:6]
            # normalize to [0, 1] for Open3D drawing
            if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
                points_colors /= 255.0
        else:
            raise NotImplementedError

        # create coordinate frame
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(**frame_cfg)
        self.o3d_vis.add_geometry(mesh_frame)

        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        self.o3d_vis.add_geometry(pcd)
        self.pcd = pcd
        self.points_colors = points_colors

    # TODO: assign 3D Box color according to pred / GT labels
    # We draw GT / pred bboxes on the same point cloud scenes
    # for better detection performance comparison
    def draw_bboxes_3d(self,
                       bboxes_3d: BaseInstance3DBoxes,
                       bbox_color: Tuple[float] = (0, 1, 0),
                       points_in_box_color: Tuple[float] = (1, 0, 0),
                       rot_axis: int = 2,
                       center_mode: str = 'lidar_bottom',
                       mode: str = 'xyz') -> None:
        """Draw bbox on visualizer and change the color of points inside
        bbox3d.

        Args:
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            bbox_color (Tuple[float]): The color of 3D bboxes.
                Defaults to (0, 1, 0).
            points_in_box_color (Tuple[float]): The color of points inside 3D
                bboxes. Defaults to (1, 0, 0).
            rot_axis (int): Rotation axis of 3D bboxes. Defaults to 2.
            center_mode (str): Indicates the center of bbox is bottom center or
                gravity center. Available mode
                ['lidar_bottom', 'camera_bottom']. Defaults to 'lidar_bottom'.
            mode (str): Indicates the type of input points, available mode
                ['xyz', 'xyzrgb']. Defaults to 'xyz'.
        """
        # Before visualizing the 3D Boxes in point cloud scene
        # we need to convert the boxes to Depth mode
        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

        if not isinstance(bboxes_3d, DepthInstance3DBoxes):
            bboxes_3d = bboxes_3d.convert_to(Box3DMode.DEPTH)

        # convert bboxes to numpy dtype
        bboxes_3d = tensor2ndarray(bboxes_3d.tensor)

        # in_box_color = np.array(points_in_box_color)

        for i in range(len(bboxes_3d)):
            center = bboxes_3d[i, 0:3]
            dim = bboxes_3d[i, 3:6]
            yaw = np.zeros(3)
            yaw[rot_axis] = bboxes_3d[i, 6]
            rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)

            if center_mode == 'lidar_bottom':
                # bottom center to gravity center
                center[rot_axis] += dim[rot_axis] / 2
            elif center_mode == 'camera_bottom':
                # bottom center to gravity center
                center[rot_axis] -= dim[rot_axis] / 2
            box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

            line_set = geometry.LineSet.create_from_oriented_bounding_box(
                box3d)
            line_set.paint_uniform_color(np.array(bbox_color[i]) / 255.)
            # draw bboxes on visualizer
            self.o3d_vis.add_geometry(line_set)

            # change the color of points which are in box
            if self.pcd is not None and mode == 'xyz':
                indices = box3d.get_point_indices_within_bounding_box(
                    self.pcd.points)
                self.points_colors[indices] = np.array(bbox_color[i]) / 255.

        # update points colors
        if self.pcd is not None:
            self.pcd.colors = o3d.utility.Vector3dVector(self.points_colors)
            self.o3d_vis.update_geometry(self.pcd)

    def set_bev_image(self,
                      bev_image: Optional[np.ndarray] = None,
                      bev_shape: int = 900) -> None:
        """Set the bev image to draw.

        Args:
            bev_image (np.ndarray, optional): The bev image to draw.
                Defaults to None.
            bev_shape (int): The bev image shape. Defaults to 900.
        """
        if bev_image is None:
            bev_image = np.zeros((bev_shape, bev_shape, 3), np.uint8)

        self._image = bev_image
        self.width, self.height = bev_image.shape[1], bev_image.shape[0]
        self._default_font_size = max(
            np.sqrt(self.height * self.width) // 90, 10)
        self.ax_save.cla()
        self.ax_save.axis(False)
        self.ax_save.imshow(bev_image, origin='lower')
        # plot camera view range
        x1 = np.linspace(0, self.width / 2)
        x2 = np.linspace(self.width / 2, self.width)
        self.ax_save.plot(
            x1,
            self.width / 2 - x1,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            x2,
            x2 - self.width / 2,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            self.width / 2,
            0,
            marker='+',
            markersize=16,
            markeredgecolor='red')

    # TODO: Support bev point cloud visualization
    @master_only
    def draw_bev_bboxes(self,
                        bboxes_3d: BaseInstance3DBoxes,
                        scale: int = 15,
                        edge_colors: Union[str, Tuple[int],
                                           List[Union[str, Tuple[int]]]] = 'o',
                        line_styles: Union[str, List[str]] = '-',
                        line_widths: Union[int, float, List[Union[int,
                                                                  float]]] = 1,
                        face_colors: Union[str, Tuple[int],
                                           List[Union[str,
                                                      Tuple[int]]]] = 'none',
                        alpha: Union[int, float] = 1) -> MMENGINE_Visualizer:
        """Draw projected 3D boxes on the image.

        Args:
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            scale (dict): Value to scale the bev bboxes for better
                visualization. Defaults to 15.
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'o'.
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'none'.
            alpha (int or float): The transparency of bboxes. Defaults to 1.
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
        bev_bboxes = tensor2ndarray(bboxes_3d.bev)
        # scale the bev bboxes for better visualization
        bev_bboxes[:, :4] *= scale
        ctr, w, h, theta = np.split(bev_bboxes, [2, 3, 4], axis=-1)
        cos_value, sin_value = np.cos(theta), np.sin(theta)
        vec1 = np.concatenate([w / 2 * cos_value, w / 2 * sin_value], axis=-1)
        vec2 = np.concatenate([-h / 2 * sin_value, h / 2 * cos_value], axis=-1)
        pt1 = ctr + vec1 + vec2
        pt2 = ctr + vec1 - vec2
        pt3 = ctr - vec1 - vec2
        pt4 = ctr - vec1 + vec2
        poly = np.stack([pt1, pt2, pt3, pt4], axis=-2)
        # move the object along x-axis
        poly[:, :, 0] += self.width / 2
        poly = [p for p in poly]
        return self.draw_polygons(
            poly,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)

    @master_only
    def draw_points_on_image(self,
                             points: Union[np.ndarray, Tensor],
                             pts2img: np.ndarray,
                             sizes: Union[np.ndarray, int] = 3,
                             max_depth: Optional[float] = None) -> None:
        """Draw projected points on the image.

        Args:
            points (np.ndarray or Tensor): Points to draw.
            pts2img (np.ndarray): The transformation matrix from the coordinate
                of point cloud to image plane.
            sizes (np.ndarray or int): The marker size. Defaults to 10.
            max_depth (float): The max depth in the color map. Defaults to
                None.
        """
        check_type('points', points, (np.ndarray, Tensor))
        points = tensor2ndarray(points)
        assert self._image is not None, 'Please set image using `set_image`'
        projected_points = points_cam2img(points, pts2img, with_depth=True)
        depths = projected_points[:, 2]
        # Show depth adaptively consideing different scenes
        if max_depth is None:
            max_depth = depths.max()
        colors = (depths % max_depth) / max_depth
        # use colormap to obtain the render color
        color_map = plt.get_cmap('jet')
        self.ax_save.scatter(
            projected_points[:, 0],
            projected_points[:, 1],
            c=colors,
            cmap=color_map,
            s=sizes,
            alpha=0.7,
            edgecolors='none')

    # TODO: set bbox color according to palette
    @master_only
    def draw_proj_bboxes_3d(
            self,
            bboxes_3d: BaseInstance3DBoxes,
            input_meta: dict,
            edge_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
            line_styles: Union[str, List[str]] = '-',
            line_widths: Union[int, float, List[Union[int, float]]] = 2,
            face_colors: Union[str, Tuple[int],
                               List[Union[str, Tuple[int]]]] = 'royalblue',
            alpha: Union[int, float] = 0.4,
            img_size: Optional[Tuple] = None):
        """Draw projected 3D boxes on the image.

        Args:
            bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
                (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            input_meta (dict): Input meta information.
            edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The colors of bboxes. ``colors`` can have the same length with
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'royalblue'.
            line_styles (str or List[str]): The linestyle of lines.
                ``line_styles`` can have the same length with texts or just
                single value. If ``line_styles`` is single value, all the lines
                will have the same linestyle. Reference to
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
            line_widths (int or float or List[int or float]): The linewidth of
                lines. ``line_widths`` can have the same length with lines or
                just single value. If ``line_widths`` is single value, all the
                lines will have the same linewidth. Defaults to 2.
            face_colors (str or Tuple[int] or List[str or Tuple[int]]):
                The face colors. Defaults to 'royalblue'.
            alpha (int or float): The transparency of bboxes. Defaults to 0.4.
            img_size (tuple, optional): The size (w, h) of the image.
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

        if isinstance(bboxes_3d, DepthInstance3DBoxes):
            proj_bbox3d_to_img = proj_depth_bbox3d_to_img
        elif isinstance(bboxes_3d, LiDARInstance3DBoxes):
            proj_bbox3d_to_img = proj_lidar_bbox3d_to_img
        elif isinstance(bboxes_3d, CameraInstance3DBoxes):
            proj_bbox3d_to_img = proj_camera_bbox3d_to_img
        else:
            raise NotImplementedError('unsupported box type!')

        edge_colors_norm = color_val_matplotlib(edge_colors)

        corners_2d = proj_bbox3d_to_img(bboxes_3d, input_meta)
        if img_size is not None:
            # Filter out the bbox where half of stuff is outside the image.
            # This is for the visualization of multi-view image.
            valid_point_idx = (corners_2d[..., 0] >= 0) & \
                        (corners_2d[..., 0] <= img_size[0]) & \
                        (corners_2d[..., 1] >= 0) & (corners_2d[..., 1] <= img_size[1])  # noqa: E501
            valid_bbox_idx = valid_point_idx.sum(axis=-1) >= 4
            corners_2d = corners_2d[valid_bbox_idx]
            filter_edge_colors = []
            filter_edge_colors_norm = []
            for i, color in enumerate(edge_colors):
                if valid_bbox_idx[i]:
                    filter_edge_colors.append(color)
                    filter_edge_colors_norm.append(edge_colors_norm[i])
            edge_colors = filter_edge_colors
            edge_colors_norm = filter_edge_colors_norm

        lines_verts_idx = [0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 1, 2, 6]
        lines_verts = corners_2d[:, lines_verts_idx, :]
        front_polys = corners_2d[:, 4:, :]
        codes = [Path.LINETO] * lines_verts.shape[1]
        codes[0] = Path.MOVETO
        pathpatches = []
        for i in range(len(corners_2d)):
            verts = lines_verts[i]
            pth = Path(verts, codes)
            pathpatches.append(PathPatch(pth))

        p = PatchCollection(
            pathpatches,
            facecolors='none',
            edgecolors=edge_colors_norm,
            linewidths=line_widths,
            linestyles=line_styles)

        self.ax_save.add_collection(p)

        # draw a mask on the front of project bboxes
        front_polys = [front_poly for front_poly in front_polys]
        return self.draw_polygons(
            front_polys,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=edge_colors)

    @master_only
    def draw_seg_mask(self, seg_mask_colors: np.ndarray) -> None:
        """Add segmentation mask to visualizer via per-point colorization.

        Args:
            seg_mask_colors (np.ndarray): The segmentation mask with shape
                (N, 6), whose first 3 dims are point coordinates and last 3
                dims are converted colors.
        """
        # we can't draw the colors on existing points
        # in case gt and pred mask would overlap
        # instead we set a large offset along x-axis for each seg mask
        if hasattr(self, 'pcd'):
            offset = (np.array(self.pcd.points).max(0) -
                      np.array(self.pcd.points).min(0))[0] * 1.2
            mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
                size=1, origin=[offset, 0,
                                0])  # create coordinate frame for seg
            self.o3d_vis.add_geometry(mesh_frame)
        else:
            offset = 0
        seg_points = copy.deepcopy(seg_mask_colors)
        seg_points[:, 0] += offset
        self.set_points(seg_points, pcd_mode=2, vis_mode='add', mode='xyzrgb')

    def _draw_instances_3d(self,
                           data_input: dict,
                           instances: InstanceData,
                           input_meta: dict,
                           vis_task: str,
                           show_pcd_rgb: bool = False,
                           palette: Optional[List[tuple]] = None) -> dict:
        """Draw 3D instances of GT or prediction.

        Args:
            data_input (dict): The input dict to draw.
            instances (:obj:`InstanceData`): Data structure for instance-level
                annotations or predictions.
            input_meta (dict): Meta information.
            vis_task (str): Visualization task, it includes: 'lidar_det',
                'multi-modality_det', 'mono_det'.
            show_pcd_rgb (bool): Whether to show RGB point cloud.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.

        Returns:
            dict: The drawn point cloud and image whose channel is RGB.
        """

        # Only visualize when there is at least one instance
        if not len(instances) > 0:
            return None

        bboxes_3d = instances.bboxes_3d  # BaseInstance3DBoxes
        labels_3d = instances.labels_3d

        data_3d = dict()

        if vis_task in ['lidar_det', 'multi-modality_det']:
            assert 'points' in data_input
            points = data_input['points']
            check_type('points', points, (np.ndarray, Tensor))
            points = tensor2ndarray(points)

            if not isinstance(bboxes_3d, DepthInstance3DBoxes):
                points, bboxes_3d_depth = to_depth_mode(points, bboxes_3d)
            else:
                bboxes_3d_depth = bboxes_3d.clone()

            if 'axis_align_matrix' in input_meta:
                points = DepthPoints(points, points_dim=points.shape[1])
                rot_mat = input_meta['axis_align_matrix'][:3, :3]
                trans_vec = input_meta['axis_align_matrix'][:3, -1]
                points.rotate(rot_mat.T)
                points.translate(trans_vec)
                points = tensor2ndarray(points.tensor)

            max_label = int(max(labels_3d) if len(labels_3d) > 0 else 0)
            bbox_color = palette if self.bbox_color is None \
                else self.bbox_color
            bbox_palette = get_palette(bbox_color, max_label + 1)
            colors = [bbox_palette[label] for label in labels_3d]

            self.set_points(
                points, pcd_mode=2, mode='xyzrgb' if show_pcd_rgb else 'xyz')
            self.draw_bboxes_3d(bboxes_3d_depth, bbox_color=colors)

            data_3d['bboxes_3d'] = tensor2ndarray(bboxes_3d_depth.tensor)
            data_3d['points'] = points

        if vis_task in ['mono_det', 'multi-modality_det']:
            assert 'img' in data_input
            img = data_input['img']
            if isinstance(img, list) or (isinstance(img, (np.ndarray, Tensor))
                                         and len(img.shape) == 4):
                # show multi-view images
                img_size = img[0].shape[:2] if isinstance(
                    img, list) else img.shape[-2:]  # noqa: E501
                img_col = self.multi_imgs_col
                img_row = math.ceil(len(img) / img_col)
                composed_img = np.zeros(
                    (img_size[0] * img_row, img_size[1] * img_col, 3),
                    dtype=np.uint8)
                for i, single_img in enumerate(img):
                    # Note that we should keep the same order of elements both
                    # in `img` and `input_meta`
                    if isinstance(single_img, Tensor):
                        single_img = single_img.permute(1, 2, 0).numpy()
                        single_img = single_img[..., [2, 1, 0]]  # bgr to rgb
                    self.set_image(single_img)
                    single_img_meta = dict()
                    for key, meta in input_meta.items():
                        if isinstance(meta,
                                      (Sequence, np.ndarray,
                                       Tensor)) and len(meta) == len(img):
                            single_img_meta[key] = meta[i]
                        else:
                            single_img_meta[key] = meta

                    max_label = int(
                        max(labels_3d) if len(labels_3d) > 0 else 0)
                    bbox_color = palette if self.bbox_color is None \
                        else self.bbox_color
                    bbox_palette = get_palette(bbox_color, max_label + 1)
                    colors = [bbox_palette[label] for label in labels_3d]

                    self.draw_proj_bboxes_3d(
                        bboxes_3d,
                        single_img_meta,
                        img_size=single_img.shape[:2][::-1],
                        edge_colors=colors)
                    if vis_task == 'mono_det' and hasattr(
                            instances, 'centers_2d'):
                        centers_2d = instances.centers_2d
                        self.draw_points(centers_2d)
                    composed_img[(i // img_col) *
                                 img_size[0]:(i // img_col + 1) * img_size[0],
                                 (i % img_col) *
                                 img_size[1]:(i % img_col + 1) *
                                 img_size[1]] = self.get_image()
                data_3d['img'] = composed_img
            else:
                # show single-view image
                # TODO: Solve the problem: some line segments of 3d bboxes are
                # out of image by a large margin
                if isinstance(data_input['img'], Tensor):
                    img = img.permute(1, 2, 0).numpy()
                    img = img[..., [2, 1, 0]]  # bgr to rgb
                self.set_image(img)

                max_label = int(max(labels_3d) if len(labels_3d) > 0 else 0)
                bbox_color = palette if self.bbox_color is None \
                    else self.bbox_color
                bbox_palette = get_palette(bbox_color, max_label + 1)
                colors = [bbox_palette[label] for label in labels_3d]

                self.draw_proj_bboxes_3d(
                    bboxes_3d, input_meta, edge_colors=colors)
                if vis_task == 'mono_det' and hasattr(instances, 'centers_2d'):
                    centers_2d = instances.centers_2d
                    self.draw_points(centers_2d)
                drawn_img = self.get_image()
                data_3d['img'] = drawn_img

        return data_3d

    def _draw_pts_sem_seg(self,
                          points: Union[Tensor, np.ndarray],
                          pts_seg: PointData,
                          palette: Optional[List[tuple]] = None,
                          keep_index: Optional[int] = None) -> None:
        """Draw 3D semantic mask of GT or prediction.

        Args:
            points (Tensor or np.ndarray): The input point cloud to draw.
            pts_seg (:obj:`PointData`): Data structure for pixel-level
                annotations or predictions.
            palette (List[tuple], optional): Palette information corresponding
                to the category. Defaults to None.
            ignore_index (int, optional): Ignore category. Defaults to None.
        """
        check_type('points', points, (np.ndarray, Tensor))

        points = tensor2ndarray(points)
        pts_sem_seg = tensor2ndarray(pts_seg.pts_semantic_mask)
        palette = np.array(palette)

        if keep_index is not None:
            keep_index = tensor2ndarray(keep_index)
            points = points[keep_index]
            pts_sem_seg = pts_sem_seg[keep_index]

        pts_color = palette[pts_sem_seg]
        seg_color = np.concatenate([points[:, :3], pts_color], axis=1)

        self.draw_seg_mask(seg_color)

    @master_only
    def show(self,
             save_path: Optional[str] = None,
             drawn_img_3d: Optional[np.ndarray] = None,
             drawn_img: Optional[np.ndarray] = None,
             win_name: str = 'image',
             wait_time: int = -1,
             continue_key: str = 'right',
             vis_task: str = 'lidar_det') -> None:
        """Show the drawn point cloud/image.

        Args:
            save_path (str, optional): Path to save open3d visualized results.
                Defaults to None.
            drawn_img_3d (np.ndarray, optional): The image to show. If
                drawn_img_3d is not None, it will show the image got by
                Visualizer. Defaults to None.
            drawn_img (np.ndarray, optional): The image to show. If drawn_img
                is not None, it will show the image got by Visualizer.
                Defaults to None.
            win_name (str): The image title. Defaults to 'image'.
            wait_time (int): Delay in milliseconds. 0 is the special value that
                means "forever". Defaults to 0.
            continue_key (str): The key for users to continue. Defaults to ' '.
        """

        # In order to show multi-modal results at the same time, we show image
        # firstly and then show point cloud since the running of
        # Open3D will block the process
        if hasattr(self, '_image'):
            if drawn_img is None and drawn_img_3d is None:
                # use the image got by Visualizer.get_image()
                if vis_task == 'multi-modality_det':
                    import matplotlib.pyplot as plt
                    is_inline = 'inline' in plt.get_backend()
                    img = self.get_image() if drawn_img is None else drawn_img
                    self._init_manager(win_name)
                    fig = self.manager.canvas.figure
                    # remove white edges by set subplot margin
                    fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
                    fig.clear()
                    ax = fig.add_subplot()
                    ax.axis(False)
                    ax.imshow(img)
                    self.manager.canvas.draw()
                    if is_inline:
                        return fig
                    else:
                        fig.show()
                    self.manager.canvas.flush_events()
                else:
                    super().show(drawn_img_3d, win_name, wait_time,
                                 continue_key)
            else:
                if vis_task == 'multi-modality_det':
                    import matplotlib.pyplot as plt
                    is_inline = 'inline' in plt.get_backend()
                    img = drawn_img if drawn_img_3d is None else drawn_img_3d
                    self._init_manager(win_name)
                    fig = self.manager.canvas.figure
                    # remove white edges by set subplot margin
                    fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
                    fig.clear()
                    ax = fig.add_subplot()
                    ax.axis(False)
                    ax.imshow(img)
                    self.manager.canvas.draw()
                    if is_inline:
                        return fig
                    else:
                        fig.show()
                    self.manager.canvas.flush_events()
                else:
                    if drawn_img_3d is not None:
                        super().show(drawn_img_3d, win_name, wait_time,
                                     continue_key)
                    if drawn_img is not None:
                        super().show(drawn_img, win_name, wait_time,
                                     continue_key)

        if hasattr(self, 'o3d_vis'):
            if hasattr(self, 'view_port'):
                self.view_control.convert_from_pinhole_camera_parameters(
                    self.view_port)
            self.flag_exit = not self.o3d_vis.poll_events()
            self.o3d_vis.update_renderer()
            # if not hasattr(self, 'view_control'):
            #     self.o3d_vis.create_window()
            #     self.view_control = self.o3d_vis.get_view_control()
            self.view_port = \
                self.view_control.convert_to_pinhole_camera_parameters()  # noqa: E501
            if wait_time != -1:
                self.last_time = time.time()
                while time.time(
                ) - self.last_time < wait_time and self.o3d_vis.poll_events():
                    self.o3d_vis.update_renderer()
                    self.view_port = \
                        self.view_control.convert_to_pinhole_camera_parameters()  # noqa: E501
                while self.flag_pause and self.o3d_vis.poll_events():
                    self.o3d_vis.update_renderer()
                    self.view_port = \
                        self.view_control.convert_to_pinhole_camera_parameters()  # noqa: E501

            else:
                while not self.flag_next and self.o3d_vis.poll_events():
                    self.o3d_vis.update_renderer()
                    self.view_port = \
                        self.view_control.convert_to_pinhole_camera_parameters()  # noqa: E501
                self.flag_next = False
            self.o3d_vis.clear_geometries()
            try:
                del self.pcd
            except (KeyError, AttributeError):
                pass
            if save_path is not None:
                if not (save_path.endswith('.png')
                        or save_path.endswith('.jpg')):
                    save_path += '.png'
                self.o3d_vis.capture_screen_image(save_path)
            if self.flag_exit:
                self.o3d_vis.destroy_window()
                self.o3d_vis.close()
                self._clear_o3d_vis()
                sys.exit(0)

    def escape_callback(self, vis):
        self.o3d_vis.clear_geometries()
        self.o3d_vis.destroy_window()
        self.o3d_vis.close()
        self._clear_o3d_vis()
        sys.exit(0)

    def space_action_callback(self, vis, action, mods):
        if action == 1:
            if self.flag_pause:
                print_log(
                    'Playback continued, press [SPACE] to pause.',
                    logger='current')
            else:
                print_log(
                    'Playback paused, press [SPACE] to continue.',
                    logger='current')
            self.flag_pause = not self.flag_pause
        return True

    def right_callback(self, vis):
        self.flag_next = True
        return False

    # TODO: Support Visualize the 3D results from image and point cloud
    # respectively
    @master_only
    def add_datasample(self,
                       name: str,
                       data_input: dict,
                       data_sample: Optional[Det3DDataSample] = None,
                       draw_gt: bool = True,
                       draw_pred: bool = True,
                       show: bool = False,
                       wait_time: float = 0,
                       out_file: Optional[str] = None,
                       o3d_save_path: Optional[str] = None,
                       vis_task: str = 'mono_det',
                       pred_score_thr: float = 0.3,
                       step: int = 0,
                       show_pcd_rgb: bool = False) -> None:
        """Draw datasample and save to all backends.

        - If GT and prediction are plotted at the same time, they are displayed
          in a stitched image where the left image is the ground truth and the
          right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and the images
          will be displayed in a local window.
        - If ``out_file`` is specified, the drawn image will be saved to
          ``out_file``. It is usually used when the display is not available.

        Args:
            name (str): The image identifier.
            data_input (dict): It should include the point clouds or image
                to draw.
            data_sample (:obj:`Det3DDataSample`, optional): Prediction
                Det3DDataSample. Defaults to None.
            draw_gt (bool): Whether to draw GT Det3DDataSample.
                Defaults to True.
            draw_pred (bool): Whether to draw Prediction Det3DDataSample.
                Defaults to True.
            show (bool): Whether to display the drawn point clouds and image.
                Defaults to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            out_file (str, optional): Path to output file. Defaults to None.
            o3d_save_path (str, optional): Path to save open3d visualized
                results. Defaults to None.
            vis_task (str): Visualization task. Defaults to 'mono_det'.
            pred_score_thr (float): The threshold to visualize the bboxes
                and masks. Defaults to 0.3.
            step (int): Global step value to record. Defaults to 0.
            show_pcd_rgb (bool): Whether to show RGB point cloud. Defaults to
                False.
        """
        assert vis_task in (
            'mono_det', 'multi-view_det', 'lidar_det', 'lidar_seg',
            'multi-modality_det'), f'got unexpected vis_task {vis_task}.'
        classes = self.dataset_meta.get('classes', None)
        # For object detection datasets, no palette is saved
        palette = self.dataset_meta.get('palette', None)
        ignore_index = self.dataset_meta.get('ignore_index', None)
        if vis_task == 'lidar_seg' and ignore_index is not None and 'pts_semantic_mask' in data_sample.gt_pts_seg:  # noqa: E501
            keep_index = data_sample.gt_pts_seg.pts_semantic_mask != ignore_index  # noqa: E501
        else:
            keep_index = None

        gt_data_3d = None
        pred_data_3d = None
        gt_img_data = None
        pred_img_data = None

        if not hasattr(self, 'o3d_vis') and vis_task in [
                'multi-view_det', 'lidar_det', 'lidar_seg',
                'multi-modality_det'
        ]:
            self.o3d_vis = self._initialize_o3d_vis(show=show)

        if draw_gt and data_sample is not None:
            if 'gt_instances_3d' in data_sample:
                gt_data_3d = self._draw_instances_3d(
                    data_input, data_sample.gt_instances_3d,
                    data_sample.metainfo, vis_task, show_pcd_rgb, palette)
            if 'gt_instances' in data_sample:
                if len(data_sample.gt_instances) > 0:
                    assert 'img' in data_input
                    img = data_input['img']
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    gt_img_data = self._draw_instances(
                        img, data_sample.gt_instances, classes, palette)
            if 'gt_pts_seg' in data_sample and vis_task == 'lidar_seg':
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
                                            'visualizing semantic ' \
                                            'segmentation results.'
                assert 'points' in data_input
                self._draw_pts_sem_seg(data_input['points'],
                                       data_sample.gt_pts_seg, palette,
                                       keep_index)

        if draw_pred and data_sample is not None:
            if 'pred_instances_3d' in data_sample:
                pred_instances_3d = data_sample.pred_instances_3d
                # .cpu can not be used for BaseInstance3DBoxes
                # so we need to use .to('cpu')
                pred_instances_3d = pred_instances_3d[
                    pred_instances_3d.scores_3d > pred_score_thr].to('cpu')
                pred_data_3d = self._draw_instances_3d(data_input,
                                                       pred_instances_3d,
                                                       data_sample.metainfo,
                                                       vis_task, show_pcd_rgb,
                                                       palette)
            if 'pred_instances' in data_sample:
                if 'img' in data_input and len(data_sample.pred_instances) > 0:
                    pred_instances = data_sample.pred_instances
                    pred_instances = pred_instances[
                        pred_instances.scores > pred_score_thr].cpu()
                    img = data_input['img']
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    pred_img_data = self._draw_instances(
                        img, pred_instances, classes, palette)
            if 'pred_pts_seg' in data_sample and vis_task == 'lidar_seg':
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
                                            'visualizing semantic ' \
                                            'segmentation results.'
                assert 'points' in data_input
                self._draw_pts_sem_seg(data_input['points'],
                                       data_sample.pred_pts_seg, palette,
                                       keep_index)

        # monocular 3d object detection image
        if vis_task in ['mono_det', 'multi-modality_det']:
            if gt_data_3d is not None and pred_data_3d is not None:
                drawn_img_3d = np.concatenate(
                    (gt_data_3d['img'], pred_data_3d['img']), axis=1)
            elif gt_data_3d is not None:
                drawn_img_3d = gt_data_3d['img']
            elif pred_data_3d is not None:
                drawn_img_3d = pred_data_3d['img']
            else:  # both instances of gt and pred are empty
                drawn_img_3d = None
        else:
            drawn_img_3d = None

        # 2d object detection image
        if gt_img_data is not None and pred_img_data is not None:
            drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
        elif gt_img_data is not None:
            drawn_img = gt_img_data
        elif pred_img_data is not None:
            drawn_img = pred_img_data
        else:
            drawn_img = None

        if show:
            self.show(
                o3d_save_path,
                drawn_img_3d,
                drawn_img,
                win_name=name,
                wait_time=wait_time,
                vis_task=vis_task)

        if out_file is not None:
            # check the suffix of the name of image file
            if not (out_file.endswith('.png') or out_file.endswith('.jpg')):
                out_file = f'{out_file}.png'
            if drawn_img_3d is not None:
                mmcv.imwrite(drawn_img_3d[..., ::-1], out_file)
            if drawn_img is not None:
                mmcv.imwrite(drawn_img[..., ::-1],
                             out_file[:-4] + '_2d' + out_file[-4:])
        else:
            self.add_image(name, drawn_img_3d, step)