File size: 50,157 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
import os
import sys
import time
from typing import List, Optional, Sequence, Tuple, Union
import matplotlib.pyplot as plt
import mmcv
import numpy as np
from matplotlib.collections import PatchCollection
from matplotlib.patches import PathPatch
from matplotlib.path import Path
from mmdet.visualization import DetLocalVisualizer, get_palette
from mmengine.dist import master_only
from mmengine.logging import print_log
from mmengine.structures import InstanceData
from mmengine.visualization import Visualizer as MMENGINE_Visualizer
from mmengine.visualization.utils import (check_type, color_val_matplotlib,
tensor2ndarray)
from torch import Tensor
from mmdet3d.registry import VISUALIZERS
from mmdet3d.structures import (BaseInstance3DBoxes, Box3DMode,
CameraInstance3DBoxes, Coord3DMode,
DepthInstance3DBoxes, DepthPoints,
Det3DDataSample, LiDARInstance3DBoxes,
PointData, points_cam2img)
from .vis_utils import (proj_camera_bbox3d_to_img, proj_depth_bbox3d_to_img,
proj_lidar_bbox3d_to_img, to_depth_mode)
try:
import open3d as o3d
from open3d import geometry
from open3d.visualization import Visualizer
except ImportError:
o3d = geometry = Visualizer = None
@VISUALIZERS.register_module()
class Det3DLocalVisualizer(DetLocalVisualizer):
"""MMDetection3D Local Visualizer.
- 3D detection and segmentation drawing methods
- draw_bboxes_3d: draw 3D bounding boxes on point clouds
- draw_proj_bboxes_3d: draw projected 3D bounding boxes on image
- draw_seg_mask: draw segmentation mask via per-point colorization
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
points (np.ndarray, optional): Points to visualize with shape (N, 3+C).
Defaults to None.
image (np.ndarray, optional): The origin image to draw. The format
should be RGB. Defaults to None.
pcd_mode (int): The point cloud mode (coordinates): 0 represents LiDAR,
1 represents CAMERA, 2 represents Depth. Defaults to 0.
vis_backends (List[dict], optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
Defaults to None.
bbox_color (str or Tuple[int], optional): Color of bbox lines.
The tuple of color should be in BGR order. Defaults to None.
text_color (str or Tuple[int]): Color of texts. The tuple of color
should be in BGR order. Defaults to (200, 200, 200).
mask_color (str or Tuple[int], optional): Color of masks. The tuple of
color should be in BGR order. Defaults to None.
line_width (int or float): The linewidth of lines. Defaults to 3.
frame_cfg (dict): The coordinate frame config while Open3D
visualization initialization.
Defaults to dict(size=1, origin=[0, 0, 0]).
alpha (int or float): The transparency of bboxes or mask.
Defaults to 0.8.
multi_imgs_col (int): The number of columns in arrangement when showing
multi-view images.
Examples:
>>> import numpy as np
>>> import torch
>>> from mmengine.structures import InstanceData
>>> from mmdet3d.structures import (DepthInstance3DBoxes
... Det3DDataSample)
>>> from mmdet3d.visualization import Det3DLocalVisualizer
>>> det3d_local_visualizer = Det3DLocalVisualizer()
>>> image = np.random.randint(0, 256, size=(10, 12, 3)).astype('uint8')
>>> points = np.random.rand(1000, 3)
>>> gt_instances_3d = InstanceData()
>>> gt_instances_3d.bboxes_3d = DepthInstance3DBoxes(
... torch.rand((5, 7)))
>>> gt_instances_3d.labels_3d = torch.randint(0, 2, (5,))
>>> gt_det3d_data_sample = Det3DDataSample()
>>> gt_det3d_data_sample.gt_instances_3d = gt_instances_3d
>>> data_input = dict(img=image, points=points)
>>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
... gt_det3d_data_sample)
>>> from mmdet3d.structures import PointData
>>> det3d_local_visualizer = Det3DLocalVisualizer()
>>> points = np.random.rand(1000, 3)
>>> gt_pts_seg = PointData()
>>> gt_pts_seg.pts_semantic_mask = torch.randint(0, 10, (1000, ))
>>> gt_det3d_data_sample = Det3DDataSample()
>>> gt_det3d_data_sample.gt_pts_seg = gt_pts_seg
>>> data_input = dict(points=points)
>>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
... gt_det3d_data_sample,
... vis_task='lidar_seg')
"""
def __init__(
self,
name: str = 'visualizer',
points: Optional[np.ndarray] = None,
image: Optional[np.ndarray] = None,
pcd_mode: int = 0,
vis_backends: Optional[List[dict]] = None,
save_dir: Optional[str] = None,
bbox_color: Optional[Union[str, Tuple[int]]] = None,
text_color: Union[str, Tuple[int]] = (200, 200, 200),
mask_color: Optional[Union[str, Tuple[int]]] = None,
line_width: Union[int, float] = 3,
frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
alpha: Union[int, float] = 0.8,
multi_imgs_col: int = 3,
fig_show_cfg: dict = dict(figsize=(18, 12))
) -> None:
super().__init__(
name=name,
image=image,
vis_backends=vis_backends,
save_dir=save_dir,
bbox_color=bbox_color,
text_color=text_color,
mask_color=mask_color,
line_width=line_width,
alpha=alpha)
if points is not None:
self.set_points(points, pcd_mode=pcd_mode, frame_cfg=frame_cfg)
self.multi_imgs_col = multi_imgs_col
self.fig_show_cfg.update(fig_show_cfg)
self.flag_pause = False
self.flag_next = False
self.flag_exit = False
def _clear_o3d_vis(self) -> None:
"""Clear open3d vis."""
if hasattr(self, 'o3d_vis'):
del self.o3d_vis
del self.points_colors
del self.view_control
if hasattr(self, 'pcd'):
del self.pcd
def _initialize_o3d_vis(self, show=True) -> Visualizer:
"""Initialize open3d vis according to frame_cfg.
Args:
frame_cfg (dict): The config to create coordinate frame in open3d
vis.
Returns:
:obj:`o3d.visualization.Visualizer`: Created open3d vis.
"""
if o3d is None or geometry is None:
raise ImportError(
'Please run "pip install open3d" to install open3d first.')
glfw_key_escape = 256 # Esc
glfw_key_space = 32 # Space
glfw_key_right = 262 # Right
o3d_vis = o3d.visualization.VisualizerWithKeyCallback()
o3d_vis.register_key_callback(glfw_key_escape, self.escape_callback)
o3d_vis.register_key_action_callback(glfw_key_space,
self.space_action_callback)
o3d_vis.register_key_callback(glfw_key_right, self.right_callback)
if os.environ.get('DISPLAY', None) is not None and show:
o3d_vis.create_window()
self.view_control = o3d_vis.get_view_control()
return o3d_vis
@master_only
def set_points(self,
points: np.ndarray,
pcd_mode: int = 0,
vis_mode: str = 'replace',
frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
points_color: Tuple[float] = (0.8, 0.8, 0.8),
points_size: int = 2,
mode: str = 'xyz') -> None:
"""Set the point cloud to draw.
Args:
points (np.ndarray): Points to visualize with shape (N, 3+C).
pcd_mode (int): The point cloud mode (coordinates): 0 represents
LiDAR, 1 represents CAMERA, 2 represents Depth. Defaults to 0.
vis_mode (str): The visualization mode in Open3D:
- 'replace': Replace the existing point cloud with input point
cloud.
- 'add': Add input point cloud into existing point cloud.
Defaults to 'replace'.
frame_cfg (dict): The coordinate frame config for Open3D
visualization initialization.
Defaults to dict(size=1, origin=[0, 0, 0]).
points_color (Tuple[float]): The color of points.
Defaults to (1, 1, 1).
points_size (int): The size of points to show on visualizer.
Defaults to 2.
mode (str): Indicate type of the input points, available mode
['xyz', 'xyzrgb']. Defaults to 'xyz'.
"""
assert points is not None
assert vis_mode in ('replace', 'add')
check_type('points', points, np.ndarray)
if not hasattr(self, 'o3d_vis'):
self.o3d_vis = self._initialize_o3d_vis()
# for now we convert points into depth mode for visualization
if pcd_mode != Coord3DMode.DEPTH:
points = Coord3DMode.convert(points, pcd_mode, Coord3DMode.DEPTH)
if hasattr(self, 'pcd') and vis_mode != 'add':
self.o3d_vis.remove_geometry(self.pcd)
# set points size in Open3D
render_option = self.o3d_vis.get_render_option()
if render_option is not None:
render_option.point_size = points_size
render_option.background_color = np.asarray([0, 0, 0])
points = points.copy()
pcd = geometry.PointCloud()
if mode == 'xyz':
pcd.points = o3d.utility.Vector3dVector(points[:, :3])
points_colors = np.tile(
np.array(points_color), (points.shape[0], 1))
elif mode == 'xyzrgb':
pcd.points = o3d.utility.Vector3dVector(points[:, :3])
points_colors = points[:, 3:6]
# normalize to [0, 1] for Open3D drawing
if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
points_colors /= 255.0
else:
raise NotImplementedError
# create coordinate frame
mesh_frame = geometry.TriangleMesh.create_coordinate_frame(**frame_cfg)
self.o3d_vis.add_geometry(mesh_frame)
pcd.colors = o3d.utility.Vector3dVector(points_colors)
self.o3d_vis.add_geometry(pcd)
self.pcd = pcd
self.points_colors = points_colors
# TODO: assign 3D Box color according to pred / GT labels
# We draw GT / pred bboxes on the same point cloud scenes
# for better detection performance comparison
def draw_bboxes_3d(self,
bboxes_3d: BaseInstance3DBoxes,
bbox_color: Tuple[float] = (0, 1, 0),
points_in_box_color: Tuple[float] = (1, 0, 0),
rot_axis: int = 2,
center_mode: str = 'lidar_bottom',
mode: str = 'xyz') -> None:
"""Draw bbox on visualizer and change the color of points inside
bbox3d.
Args:
bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
(x, y, z, x_size, y_size, z_size, yaw) to visualize.
bbox_color (Tuple[float]): The color of 3D bboxes.
Defaults to (0, 1, 0).
points_in_box_color (Tuple[float]): The color of points inside 3D
bboxes. Defaults to (1, 0, 0).
rot_axis (int): Rotation axis of 3D bboxes. Defaults to 2.
center_mode (str): Indicates the center of bbox is bottom center or
gravity center. Available mode
['lidar_bottom', 'camera_bottom']. Defaults to 'lidar_bottom'.
mode (str): Indicates the type of input points, available mode
['xyz', 'xyzrgb']. Defaults to 'xyz'.
"""
# Before visualizing the 3D Boxes in point cloud scene
# we need to convert the boxes to Depth mode
check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
if not isinstance(bboxes_3d, DepthInstance3DBoxes):
bboxes_3d = bboxes_3d.convert_to(Box3DMode.DEPTH)
# convert bboxes to numpy dtype
bboxes_3d = tensor2ndarray(bboxes_3d.tensor)
# in_box_color = np.array(points_in_box_color)
for i in range(len(bboxes_3d)):
center = bboxes_3d[i, 0:3]
dim = bboxes_3d[i, 3:6]
yaw = np.zeros(3)
yaw[rot_axis] = bboxes_3d[i, 6]
rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)
if center_mode == 'lidar_bottom':
# bottom center to gravity center
center[rot_axis] += dim[rot_axis] / 2
elif center_mode == 'camera_bottom':
# bottom center to gravity center
center[rot_axis] -= dim[rot_axis] / 2
box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)
line_set = geometry.LineSet.create_from_oriented_bounding_box(
box3d)
line_set.paint_uniform_color(np.array(bbox_color[i]) / 255.)
# draw bboxes on visualizer
self.o3d_vis.add_geometry(line_set)
# change the color of points which are in box
if self.pcd is not None and mode == 'xyz':
indices = box3d.get_point_indices_within_bounding_box(
self.pcd.points)
self.points_colors[indices] = np.array(bbox_color[i]) / 255.
# update points colors
if self.pcd is not None:
self.pcd.colors = o3d.utility.Vector3dVector(self.points_colors)
self.o3d_vis.update_geometry(self.pcd)
def set_bev_image(self,
bev_image: Optional[np.ndarray] = None,
bev_shape: int = 900) -> None:
"""Set the bev image to draw.
Args:
bev_image (np.ndarray, optional): The bev image to draw.
Defaults to None.
bev_shape (int): The bev image shape. Defaults to 900.
"""
if bev_image is None:
bev_image = np.zeros((bev_shape, bev_shape, 3), np.uint8)
self._image = bev_image
self.width, self.height = bev_image.shape[1], bev_image.shape[0]
self._default_font_size = max(
np.sqrt(self.height * self.width) // 90, 10)
self.ax_save.cla()
self.ax_save.axis(False)
self.ax_save.imshow(bev_image, origin='lower')
# plot camera view range
x1 = np.linspace(0, self.width / 2)
x2 = np.linspace(self.width / 2, self.width)
self.ax_save.plot(
x1,
self.width / 2 - x1,
ls='--',
color='grey',
linewidth=1,
alpha=0.5)
self.ax_save.plot(
x2,
x2 - self.width / 2,
ls='--',
color='grey',
linewidth=1,
alpha=0.5)
self.ax_save.plot(
self.width / 2,
0,
marker='+',
markersize=16,
markeredgecolor='red')
# TODO: Support bev point cloud visualization
@master_only
def draw_bev_bboxes(self,
bboxes_3d: BaseInstance3DBoxes,
scale: int = 15,
edge_colors: Union[str, Tuple[int],
List[Union[str, Tuple[int]]]] = 'o',
line_styles: Union[str, List[str]] = '-',
line_widths: Union[int, float, List[Union[int,
float]]] = 1,
face_colors: Union[str, Tuple[int],
List[Union[str,
Tuple[int]]]] = 'none',
alpha: Union[int, float] = 1) -> MMENGINE_Visualizer:
"""Draw projected 3D boxes on the image.
Args:
bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
(x, y, z, x_size, y_size, z_size, yaw) to visualize.
scale (dict): Value to scale the bev bboxes for better
visualization. Defaults to 15.
edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
The colors of bboxes. ``colors`` can have the same length with
lines or just single value. If ``colors`` is single value, all
the lines will have the same colors. Refer to `matplotlib.
colors` for full list of formats that are accepted.
Defaults to 'o'.
line_styles (str or List[str]): The linestyle of lines.
``line_styles`` can have the same length with texts or just
single value. If ``line_styles`` is single value, all the lines
will have the same linestyle. Reference to
https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
for more details. Defaults to '-'.
line_widths (int or float or List[int or float]): The linewidth of
lines. ``line_widths`` can have the same length with lines or
just single value. If ``line_widths`` is single value, all the
lines will have the same linewidth. Defaults to 2.
face_colors (str or Tuple[int] or List[str or Tuple[int]]):
The face colors. Defaults to 'none'.
alpha (int or float): The transparency of bboxes. Defaults to 1.
"""
check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
bev_bboxes = tensor2ndarray(bboxes_3d.bev)
# scale the bev bboxes for better visualization
bev_bboxes[:, :4] *= scale
ctr, w, h, theta = np.split(bev_bboxes, [2, 3, 4], axis=-1)
cos_value, sin_value = np.cos(theta), np.sin(theta)
vec1 = np.concatenate([w / 2 * cos_value, w / 2 * sin_value], axis=-1)
vec2 = np.concatenate([-h / 2 * sin_value, h / 2 * cos_value], axis=-1)
pt1 = ctr + vec1 + vec2
pt2 = ctr + vec1 - vec2
pt3 = ctr - vec1 - vec2
pt4 = ctr - vec1 + vec2
poly = np.stack([pt1, pt2, pt3, pt4], axis=-2)
# move the object along x-axis
poly[:, :, 0] += self.width / 2
poly = [p for p in poly]
return self.draw_polygons(
poly,
alpha=alpha,
edge_colors=edge_colors,
line_styles=line_styles,
line_widths=line_widths,
face_colors=face_colors)
@master_only
def draw_points_on_image(self,
points: Union[np.ndarray, Tensor],
pts2img: np.ndarray,
sizes: Union[np.ndarray, int] = 3,
max_depth: Optional[float] = None) -> None:
"""Draw projected points on the image.
Args:
points (np.ndarray or Tensor): Points to draw.
pts2img (np.ndarray): The transformation matrix from the coordinate
of point cloud to image plane.
sizes (np.ndarray or int): The marker size. Defaults to 10.
max_depth (float): The max depth in the color map. Defaults to
None.
"""
check_type('points', points, (np.ndarray, Tensor))
points = tensor2ndarray(points)
assert self._image is not None, 'Please set image using `set_image`'
projected_points = points_cam2img(points, pts2img, with_depth=True)
depths = projected_points[:, 2]
# Show depth adaptively consideing different scenes
if max_depth is None:
max_depth = depths.max()
colors = (depths % max_depth) / max_depth
# use colormap to obtain the render color
color_map = plt.get_cmap('jet')
self.ax_save.scatter(
projected_points[:, 0],
projected_points[:, 1],
c=colors,
cmap=color_map,
s=sizes,
alpha=0.7,
edgecolors='none')
# TODO: set bbox color according to palette
@master_only
def draw_proj_bboxes_3d(
self,
bboxes_3d: BaseInstance3DBoxes,
input_meta: dict,
edge_colors: Union[str, Tuple[int],
List[Union[str, Tuple[int]]]] = 'royalblue',
line_styles: Union[str, List[str]] = '-',
line_widths: Union[int, float, List[Union[int, float]]] = 2,
face_colors: Union[str, Tuple[int],
List[Union[str, Tuple[int]]]] = 'royalblue',
alpha: Union[int, float] = 0.4,
img_size: Optional[Tuple] = None):
"""Draw projected 3D boxes on the image.
Args:
bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bbox
(x, y, z, x_size, y_size, z_size, yaw) to visualize.
input_meta (dict): Input meta information.
edge_colors (str or Tuple[int] or List[str or Tuple[int]]):
The colors of bboxes. ``colors`` can have the same length with
lines or just single value. If ``colors`` is single value, all
the lines will have the same colors. Refer to `matplotlib.
colors` for full list of formats that are accepted.
Defaults to 'royalblue'.
line_styles (str or List[str]): The linestyle of lines.
``line_styles`` can have the same length with texts or just
single value. If ``line_styles`` is single value, all the lines
will have the same linestyle. Reference to
https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
for more details. Defaults to '-'.
line_widths (int or float or List[int or float]): The linewidth of
lines. ``line_widths`` can have the same length with lines or
just single value. If ``line_widths`` is single value, all the
lines will have the same linewidth. Defaults to 2.
face_colors (str or Tuple[int] or List[str or Tuple[int]]):
The face colors. Defaults to 'royalblue'.
alpha (int or float): The transparency of bboxes. Defaults to 0.4.
img_size (tuple, optional): The size (w, h) of the image.
"""
check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
if isinstance(bboxes_3d, DepthInstance3DBoxes):
proj_bbox3d_to_img = proj_depth_bbox3d_to_img
elif isinstance(bboxes_3d, LiDARInstance3DBoxes):
proj_bbox3d_to_img = proj_lidar_bbox3d_to_img
elif isinstance(bboxes_3d, CameraInstance3DBoxes):
proj_bbox3d_to_img = proj_camera_bbox3d_to_img
else:
raise NotImplementedError('unsupported box type!')
edge_colors_norm = color_val_matplotlib(edge_colors)
corners_2d = proj_bbox3d_to_img(bboxes_3d, input_meta)
if img_size is not None:
# Filter out the bbox where half of stuff is outside the image.
# This is for the visualization of multi-view image.
valid_point_idx = (corners_2d[..., 0] >= 0) & \
(corners_2d[..., 0] <= img_size[0]) & \
(corners_2d[..., 1] >= 0) & (corners_2d[..., 1] <= img_size[1]) # noqa: E501
valid_bbox_idx = valid_point_idx.sum(axis=-1) >= 4
corners_2d = corners_2d[valid_bbox_idx]
filter_edge_colors = []
filter_edge_colors_norm = []
for i, color in enumerate(edge_colors):
if valid_bbox_idx[i]:
filter_edge_colors.append(color)
filter_edge_colors_norm.append(edge_colors_norm[i])
edge_colors = filter_edge_colors
edge_colors_norm = filter_edge_colors_norm
lines_verts_idx = [0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 1, 2, 6]
lines_verts = corners_2d[:, lines_verts_idx, :]
front_polys = corners_2d[:, 4:, :]
codes = [Path.LINETO] * lines_verts.shape[1]
codes[0] = Path.MOVETO
pathpatches = []
for i in range(len(corners_2d)):
verts = lines_verts[i]
pth = Path(verts, codes)
pathpatches.append(PathPatch(pth))
p = PatchCollection(
pathpatches,
facecolors='none',
edgecolors=edge_colors_norm,
linewidths=line_widths,
linestyles=line_styles)
self.ax_save.add_collection(p)
# draw a mask on the front of project bboxes
front_polys = [front_poly for front_poly in front_polys]
return self.draw_polygons(
front_polys,
alpha=alpha,
edge_colors=edge_colors,
line_styles=line_styles,
line_widths=line_widths,
face_colors=edge_colors)
@master_only
def draw_seg_mask(self, seg_mask_colors: np.ndarray) -> None:
"""Add segmentation mask to visualizer via per-point colorization.
Args:
seg_mask_colors (np.ndarray): The segmentation mask with shape
(N, 6), whose first 3 dims are point coordinates and last 3
dims are converted colors.
"""
# we can't draw the colors on existing points
# in case gt and pred mask would overlap
# instead we set a large offset along x-axis for each seg mask
if hasattr(self, 'pcd'):
offset = (np.array(self.pcd.points).max(0) -
np.array(self.pcd.points).min(0))[0] * 1.2
mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
size=1, origin=[offset, 0,
0]) # create coordinate frame for seg
self.o3d_vis.add_geometry(mesh_frame)
else:
offset = 0
seg_points = copy.deepcopy(seg_mask_colors)
seg_points[:, 0] += offset
self.set_points(seg_points, pcd_mode=2, vis_mode='add', mode='xyzrgb')
def _draw_instances_3d(self,
data_input: dict,
instances: InstanceData,
input_meta: dict,
vis_task: str,
show_pcd_rgb: bool = False,
palette: Optional[List[tuple]] = None) -> dict:
"""Draw 3D instances of GT or prediction.
Args:
data_input (dict): The input dict to draw.
instances (:obj:`InstanceData`): Data structure for instance-level
annotations or predictions.
input_meta (dict): Meta information.
vis_task (str): Visualization task, it includes: 'lidar_det',
'multi-modality_det', 'mono_det'.
show_pcd_rgb (bool): Whether to show RGB point cloud.
palette (List[tuple], optional): Palette information corresponding
to the category. Defaults to None.
Returns:
dict: The drawn point cloud and image whose channel is RGB.
"""
# Only visualize when there is at least one instance
if not len(instances) > 0:
return None
bboxes_3d = instances.bboxes_3d # BaseInstance3DBoxes
labels_3d = instances.labels_3d
data_3d = dict()
if vis_task in ['lidar_det', 'multi-modality_det']:
assert 'points' in data_input
points = data_input['points']
check_type('points', points, (np.ndarray, Tensor))
points = tensor2ndarray(points)
if not isinstance(bboxes_3d, DepthInstance3DBoxes):
points, bboxes_3d_depth = to_depth_mode(points, bboxes_3d)
else:
bboxes_3d_depth = bboxes_3d.clone()
if 'axis_align_matrix' in input_meta:
points = DepthPoints(points, points_dim=points.shape[1])
rot_mat = input_meta['axis_align_matrix'][:3, :3]
trans_vec = input_meta['axis_align_matrix'][:3, -1]
points.rotate(rot_mat.T)
points.translate(trans_vec)
points = tensor2ndarray(points.tensor)
max_label = int(max(labels_3d) if len(labels_3d) > 0 else 0)
bbox_color = palette if self.bbox_color is None \
else self.bbox_color
bbox_palette = get_palette(bbox_color, max_label + 1)
colors = [bbox_palette[label] for label in labels_3d]
self.set_points(
points, pcd_mode=2, mode='xyzrgb' if show_pcd_rgb else 'xyz')
self.draw_bboxes_3d(bboxes_3d_depth, bbox_color=colors)
data_3d['bboxes_3d'] = tensor2ndarray(bboxes_3d_depth.tensor)
data_3d['points'] = points
if vis_task in ['mono_det', 'multi-modality_det']:
assert 'img' in data_input
img = data_input['img']
if isinstance(img, list) or (isinstance(img, (np.ndarray, Tensor))
and len(img.shape) == 4):
# show multi-view images
img_size = img[0].shape[:2] if isinstance(
img, list) else img.shape[-2:] # noqa: E501
img_col = self.multi_imgs_col
img_row = math.ceil(len(img) / img_col)
composed_img = np.zeros(
(img_size[0] * img_row, img_size[1] * img_col, 3),
dtype=np.uint8)
for i, single_img in enumerate(img):
# Note that we should keep the same order of elements both
# in `img` and `input_meta`
if isinstance(single_img, Tensor):
single_img = single_img.permute(1, 2, 0).numpy()
single_img = single_img[..., [2, 1, 0]] # bgr to rgb
self.set_image(single_img)
single_img_meta = dict()
for key, meta in input_meta.items():
if isinstance(meta,
(Sequence, np.ndarray,
Tensor)) and len(meta) == len(img):
single_img_meta[key] = meta[i]
else:
single_img_meta[key] = meta
max_label = int(
max(labels_3d) if len(labels_3d) > 0 else 0)
bbox_color = palette if self.bbox_color is None \
else self.bbox_color
bbox_palette = get_palette(bbox_color, max_label + 1)
colors = [bbox_palette[label] for label in labels_3d]
self.draw_proj_bboxes_3d(
bboxes_3d,
single_img_meta,
img_size=single_img.shape[:2][::-1],
edge_colors=colors)
if vis_task == 'mono_det' and hasattr(
instances, 'centers_2d'):
centers_2d = instances.centers_2d
self.draw_points(centers_2d)
composed_img[(i // img_col) *
img_size[0]:(i // img_col + 1) * img_size[0],
(i % img_col) *
img_size[1]:(i % img_col + 1) *
img_size[1]] = self.get_image()
data_3d['img'] = composed_img
else:
# show single-view image
# TODO: Solve the problem: some line segments of 3d bboxes are
# out of image by a large margin
if isinstance(data_input['img'], Tensor):
img = img.permute(1, 2, 0).numpy()
img = img[..., [2, 1, 0]] # bgr to rgb
self.set_image(img)
max_label = int(max(labels_3d) if len(labels_3d) > 0 else 0)
bbox_color = palette if self.bbox_color is None \
else self.bbox_color
bbox_palette = get_palette(bbox_color, max_label + 1)
colors = [bbox_palette[label] for label in labels_3d]
self.draw_proj_bboxes_3d(
bboxes_3d, input_meta, edge_colors=colors)
if vis_task == 'mono_det' and hasattr(instances, 'centers_2d'):
centers_2d = instances.centers_2d
self.draw_points(centers_2d)
drawn_img = self.get_image()
data_3d['img'] = drawn_img
return data_3d
def _draw_pts_sem_seg(self,
points: Union[Tensor, np.ndarray],
pts_seg: PointData,
palette: Optional[List[tuple]] = None,
keep_index: Optional[int] = None) -> None:
"""Draw 3D semantic mask of GT or prediction.
Args:
points (Tensor or np.ndarray): The input point cloud to draw.
pts_seg (:obj:`PointData`): Data structure for pixel-level
annotations or predictions.
palette (List[tuple], optional): Palette information corresponding
to the category. Defaults to None.
ignore_index (int, optional): Ignore category. Defaults to None.
"""
check_type('points', points, (np.ndarray, Tensor))
points = tensor2ndarray(points)
pts_sem_seg = tensor2ndarray(pts_seg.pts_semantic_mask)
palette = np.array(palette)
if keep_index is not None:
keep_index = tensor2ndarray(keep_index)
points = points[keep_index]
pts_sem_seg = pts_sem_seg[keep_index]
pts_color = palette[pts_sem_seg]
seg_color = np.concatenate([points[:, :3], pts_color], axis=1)
self.draw_seg_mask(seg_color)
@master_only
def show(self,
save_path: Optional[str] = None,
drawn_img_3d: Optional[np.ndarray] = None,
drawn_img: Optional[np.ndarray] = None,
win_name: str = 'image',
wait_time: int = -1,
continue_key: str = 'right',
vis_task: str = 'lidar_det') -> None:
"""Show the drawn point cloud/image.
Args:
save_path (str, optional): Path to save open3d visualized results.
Defaults to None.
drawn_img_3d (np.ndarray, optional): The image to show. If
drawn_img_3d is not None, it will show the image got by
Visualizer. Defaults to None.
drawn_img (np.ndarray, optional): The image to show. If drawn_img
is not None, it will show the image got by Visualizer.
Defaults to None.
win_name (str): The image title. Defaults to 'image'.
wait_time (int): Delay in milliseconds. 0 is the special value that
means "forever". Defaults to 0.
continue_key (str): The key for users to continue. Defaults to ' '.
"""
# In order to show multi-modal results at the same time, we show image
# firstly and then show point cloud since the running of
# Open3D will block the process
if hasattr(self, '_image'):
if drawn_img is None and drawn_img_3d is None:
# use the image got by Visualizer.get_image()
if vis_task == 'multi-modality_det':
import matplotlib.pyplot as plt
is_inline = 'inline' in plt.get_backend()
img = self.get_image() if drawn_img is None else drawn_img
self._init_manager(win_name)
fig = self.manager.canvas.figure
# remove white edges by set subplot margin
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
fig.clear()
ax = fig.add_subplot()
ax.axis(False)
ax.imshow(img)
self.manager.canvas.draw()
if is_inline:
return fig
else:
fig.show()
self.manager.canvas.flush_events()
else:
super().show(drawn_img_3d, win_name, wait_time,
continue_key)
else:
if vis_task == 'multi-modality_det':
import matplotlib.pyplot as plt
is_inline = 'inline' in plt.get_backend()
img = drawn_img if drawn_img_3d is None else drawn_img_3d
self._init_manager(win_name)
fig = self.manager.canvas.figure
# remove white edges by set subplot margin
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
fig.clear()
ax = fig.add_subplot()
ax.axis(False)
ax.imshow(img)
self.manager.canvas.draw()
if is_inline:
return fig
else:
fig.show()
self.manager.canvas.flush_events()
else:
if drawn_img_3d is not None:
super().show(drawn_img_3d, win_name, wait_time,
continue_key)
if drawn_img is not None:
super().show(drawn_img, win_name, wait_time,
continue_key)
if hasattr(self, 'o3d_vis'):
if hasattr(self, 'view_port'):
self.view_control.convert_from_pinhole_camera_parameters(
self.view_port)
self.flag_exit = not self.o3d_vis.poll_events()
self.o3d_vis.update_renderer()
# if not hasattr(self, 'view_control'):
# self.o3d_vis.create_window()
# self.view_control = self.o3d_vis.get_view_control()
self.view_port = \
self.view_control.convert_to_pinhole_camera_parameters() # noqa: E501
if wait_time != -1:
self.last_time = time.time()
while time.time(
) - self.last_time < wait_time and self.o3d_vis.poll_events():
self.o3d_vis.update_renderer()
self.view_port = \
self.view_control.convert_to_pinhole_camera_parameters() # noqa: E501
while self.flag_pause and self.o3d_vis.poll_events():
self.o3d_vis.update_renderer()
self.view_port = \
self.view_control.convert_to_pinhole_camera_parameters() # noqa: E501
else:
while not self.flag_next and self.o3d_vis.poll_events():
self.o3d_vis.update_renderer()
self.view_port = \
self.view_control.convert_to_pinhole_camera_parameters() # noqa: E501
self.flag_next = False
self.o3d_vis.clear_geometries()
try:
del self.pcd
except (KeyError, AttributeError):
pass
if save_path is not None:
if not (save_path.endswith('.png')
or save_path.endswith('.jpg')):
save_path += '.png'
self.o3d_vis.capture_screen_image(save_path)
if self.flag_exit:
self.o3d_vis.destroy_window()
self.o3d_vis.close()
self._clear_o3d_vis()
sys.exit(0)
def escape_callback(self, vis):
self.o3d_vis.clear_geometries()
self.o3d_vis.destroy_window()
self.o3d_vis.close()
self._clear_o3d_vis()
sys.exit(0)
def space_action_callback(self, vis, action, mods):
if action == 1:
if self.flag_pause:
print_log(
'Playback continued, press [SPACE] to pause.',
logger='current')
else:
print_log(
'Playback paused, press [SPACE] to continue.',
logger='current')
self.flag_pause = not self.flag_pause
return True
def right_callback(self, vis):
self.flag_next = True
return False
# TODO: Support Visualize the 3D results from image and point cloud
# respectively
@master_only
def add_datasample(self,
name: str,
data_input: dict,
data_sample: Optional[Det3DDataSample] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: float = 0,
out_file: Optional[str] = None,
o3d_save_path: Optional[str] = None,
vis_task: str = 'mono_det',
pred_score_thr: float = 0.3,
step: int = 0,
show_pcd_rgb: bool = False) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are displayed
in a stitched image where the left image is the ground truth and the
right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and the images
will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be saved to
``out_file``. It is usually used when the display is not available.
Args:
name (str): The image identifier.
data_input (dict): It should include the point clouds or image
to draw.
data_sample (:obj:`Det3DDataSample`, optional): Prediction
Det3DDataSample. Defaults to None.
draw_gt (bool): Whether to draw GT Det3DDataSample.
Defaults to True.
draw_pred (bool): Whether to draw Prediction Det3DDataSample.
Defaults to True.
show (bool): Whether to display the drawn point clouds and image.
Defaults to False.
wait_time (float): The interval of show (s). Defaults to 0.
out_file (str, optional): Path to output file. Defaults to None.
o3d_save_path (str, optional): Path to save open3d visualized
results. Defaults to None.
vis_task (str): Visualization task. Defaults to 'mono_det'.
pred_score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
step (int): Global step value to record. Defaults to 0.
show_pcd_rgb (bool): Whether to show RGB point cloud. Defaults to
False.
"""
assert vis_task in (
'mono_det', 'multi-view_det', 'lidar_det', 'lidar_seg',
'multi-modality_det'), f'got unexpected vis_task {vis_task}.'
classes = self.dataset_meta.get('classes', None)
# For object detection datasets, no palette is saved
palette = self.dataset_meta.get('palette', None)
ignore_index = self.dataset_meta.get('ignore_index', None)
if vis_task == 'lidar_seg' and ignore_index is not None and 'pts_semantic_mask' in data_sample.gt_pts_seg: # noqa: E501
keep_index = data_sample.gt_pts_seg.pts_semantic_mask != ignore_index # noqa: E501
else:
keep_index = None
gt_data_3d = None
pred_data_3d = None
gt_img_data = None
pred_img_data = None
if not hasattr(self, 'o3d_vis') and vis_task in [
'multi-view_det', 'lidar_det', 'lidar_seg',
'multi-modality_det'
]:
self.o3d_vis = self._initialize_o3d_vis(show=show)
if draw_gt and data_sample is not None:
if 'gt_instances_3d' in data_sample:
gt_data_3d = self._draw_instances_3d(
data_input, data_sample.gt_instances_3d,
data_sample.metainfo, vis_task, show_pcd_rgb, palette)
if 'gt_instances' in data_sample:
if len(data_sample.gt_instances) > 0:
assert 'img' in data_input
img = data_input['img']
if isinstance(data_input['img'], Tensor):
img = data_input['img'].permute(1, 2, 0).numpy()
img = img[..., [2, 1, 0]] # bgr to rgb
gt_img_data = self._draw_instances(
img, data_sample.gt_instances, classes, palette)
if 'gt_pts_seg' in data_sample and vis_task == 'lidar_seg':
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing semantic ' \
'segmentation results.'
assert 'points' in data_input
self._draw_pts_sem_seg(data_input['points'],
data_sample.gt_pts_seg, palette,
keep_index)
if draw_pred and data_sample is not None:
if 'pred_instances_3d' in data_sample:
pred_instances_3d = data_sample.pred_instances_3d
# .cpu can not be used for BaseInstance3DBoxes
# so we need to use .to('cpu')
pred_instances_3d = pred_instances_3d[
pred_instances_3d.scores_3d > pred_score_thr].to('cpu')
pred_data_3d = self._draw_instances_3d(data_input,
pred_instances_3d,
data_sample.metainfo,
vis_task, show_pcd_rgb,
palette)
if 'pred_instances' in data_sample:
if 'img' in data_input and len(data_sample.pred_instances) > 0:
pred_instances = data_sample.pred_instances
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr].cpu()
img = data_input['img']
if isinstance(data_input['img'], Tensor):
img = data_input['img'].permute(1, 2, 0).numpy()
img = img[..., [2, 1, 0]] # bgr to rgb
pred_img_data = self._draw_instances(
img, pred_instances, classes, palette)
if 'pred_pts_seg' in data_sample and vis_task == 'lidar_seg':
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing semantic ' \
'segmentation results.'
assert 'points' in data_input
self._draw_pts_sem_seg(data_input['points'],
data_sample.pred_pts_seg, palette,
keep_index)
# monocular 3d object detection image
if vis_task in ['mono_det', 'multi-modality_det']:
if gt_data_3d is not None and pred_data_3d is not None:
drawn_img_3d = np.concatenate(
(gt_data_3d['img'], pred_data_3d['img']), axis=1)
elif gt_data_3d is not None:
drawn_img_3d = gt_data_3d['img']
elif pred_data_3d is not None:
drawn_img_3d = pred_data_3d['img']
else: # both instances of gt and pred are empty
drawn_img_3d = None
else:
drawn_img_3d = None
# 2d object detection image
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
elif pred_img_data is not None:
drawn_img = pred_img_data
else:
drawn_img = None
if show:
self.show(
o3d_save_path,
drawn_img_3d,
drawn_img,
win_name=name,
wait_time=wait_time,
vis_task=vis_task)
if out_file is not None:
# check the suffix of the name of image file
if not (out_file.endswith('.png') or out_file.endswith('.jpg')):
out_file = f'{out_file}.png'
if drawn_img_3d is not None:
mmcv.imwrite(drawn_img_3d[..., ::-1], out_file)
if drawn_img is not None:
mmcv.imwrite(drawn_img[..., ::-1],
out_file[:-4] + '_2d' + out_file[-4:])
else:
self.add_image(name, drawn_img_3d, step)
|