File size: 6,347 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# 自定义数据预处理流程

## 数据预处理流程的设计

遵循一般惯例,我们使用 `Dataset``DataLoader` 来调用多个进程进行数据的加载。`Dataset` 将会返回与模型前向传播的参数所对应的数据项构成的字典。因为目标检测中的数据的尺寸可能无法保持一致(如点云中点的数量、真实标注框的尺寸等),我们在 MMCV 中引入一个 `DataContainer` 类型,来帮助收集和分发不同尺寸的数据。请参考[此处](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py)获取更多细节。

数据预处理流程和数据集之间是互相分离的两个部分,通常数据集定义了如何处理标注信息,而数据预处理流程定义了准备数据项字典的所有步骤。数据集预处理流程包含一系列的操作,每个操作将一个字典作为输入,并输出应用于下一个转换的一个新的字典。

我们将在下图中展示一个最经典的数据集预处理流程,其中蓝色框表示预处理流程中的各项操作。随着预处理的进行,每一个操作都会添加新的键值(图中标记为绿色)到输出字典中,或者更新当前存在的键值(图中标记为橙色)。

![](../../../resources/data_pipeline.png)

预处理流程中的各项操作主要分为数据加载、预处理、格式化、测试时的数据增强。

接下来将展示一个用于 PointPillars 模型的数据集预处理流程的例子。

```python
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        backend_args=backend_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        backend_args=backend_args),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        pts_scale_ratio=1.0,
        flip=False,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]
```

对于每项操作,我们将列出相关的被添加/更新/移除的字典项。

### 数据加载

`LoadPointsFromFile`

- 添加:points

`LoadPointsFromMultiSweeps`

- 更新:points

`LoadAnnotations3D`

- 添加:gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels, pts_instance_mask, pts_semantic_mask, bbox3d_fields, pts_mask_fields, pts_seg_fields

### 预处理

`GlobalRotScaleTrans`

- 添加:pcd_trans, pcd_rotation, pcd_scale_factor
- 更新:points, \*bbox3d_fields

`RandomFlip3D`

- 添加:flip, pcd_horizontal_flip, pcd_vertical_flip
- 更新:points, \*bbox3d_fields

`PointsRangeFilter`

- 更新:points

`ObjectRangeFilter`

- 更新:gt_bboxes_3d, gt_labels_3d

`ObjectNameFilter`

- 更新:gt_bboxes_3d, gt_labels_3d

`PointShuffle`

- 更新:points

`PointsRangeFilter`

- 更新:points

### 格式化

`DefaultFormatBundle3D`

- 更新:points, gt_bboxes_3d, gt_labels_3d, gt_bboxes, gt_labels

`Collect3D`

- 添加:img_meta (由 `meta_keys` 指定的键值构成的 img_meta)
- 移除:所有除 `keys` 指定的键值以外的其他键值

### 测试时的数据增强

`MultiScaleFlipAug`

- 更新: scale, pcd_scale_factor, flip, flip_direction, pcd_horizontal_flip, pcd_vertical_flip (与这些指定的参数对应的增强后的数据列表)

## 扩展并使用自定义数据集预处理方法

1. 在任意文件中写入新的数据集预处理方法,如 `my_pipeline.py`,该预处理方法的输入和输出均为字典

   ```python
   from mmdet.datasets import PIPELINES

   @PIPELINES.register_module()
   class MyTransform:

       def __call__(self, results):
           results['dummy'] = True
           return results
   ```

2. 导入新的预处理方法类

   ```python
   from .my_pipeline import MyTransform
   ```

3. 在配置文件中使用该数据集预处理方法

   ```python
   train_pipeline = [
       dict(
           type='LoadPointsFromFile',
           load_dim=5,
           use_dim=5,
           backend_args=backend_args),
       dict(
           type='LoadPointsFromMultiSweeps',
           sweeps_num=10,
           backend_args=backend_args),
       dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
       dict(
           type='GlobalRotScaleTrans',
           rot_range=[-0.3925, 0.3925],
           scale_ratio_range=[0.95, 1.05],
           translation_std=[0, 0, 0]),
       dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
       dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
       dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
       dict(type='ObjectNameFilter', classes=class_names),
       dict(type='MyTransform'),
       dict(type='PointShuffle'),
       dict(type='DefaultFormatBundle3D', class_names=class_names),
       dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
   ]
   ```