File size: 19,784 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Use Pure Point Cloud Dataset
## Data Pre-Processing
### Convert Point cloud format
Currently, we only support bin format point cloud training and inference, before training on your own datasets, you need to transform your point cloud format to bin file. The common point cloud data formats include pcd and las, we provide some open-source tools for reference.
1. Convert pcd to bin: https://github.com/leofansq/Tools_RosBag2KITTI
2. Convert las to bin: The common conversion path is las -> pcd -> bin, and the conversion from las -> pcd can be achieved through [this tool](https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor).
### Point cloud annotation
MMDetection3D does not support point cloud annotation. Some open-source annotation tools are offered for reference:
- [SUSTechPOINTS](https://github.com/naurril/SUSTechPOINTS)
- [LATTE](https://github.com/bernwang/latte)
Besides, we improved [LATTE](https://github.com/bernwang/latte) for better usage. More details can be found [here](https://arxiv.org/abs/2011.10174).
## Support new data format
To support a new data format, you can either convert them to existing formats or directly convert them to the middle format. You could also choose to convert them offline (before training by a script) or online (implement a new dataset and do the conversion at training).
### Reorganize new data formats to existing format
Once your datasets only contain point cloud file and 3D Bounding box annotations, without calib file. We recommend converting it into the basic formats, the annotations files in basic format has the following necessary keys:
```python
[
{'sample_idx':
'lidar_points': {'lidar_path': velodyne_path,
....
},
'annos': {'box_type_3d': (str) 'LiDAR/Camera/Depth'
'gt_bboxes_3d': <np.ndarray> (n, 7)
'gt_names': [list]
....
}
'calib': { .....}
'images': { .....}
}
]
```
In MMDetection3D, for the data that is inconvenient to read directly online, we recommend converting it into into basic format as above and do the conversion offline, thus you only need to modify the config's data annotation paths and classes after the conversion.
To use data that share a similar format as the existing datasets, e.g., Lyft has a similar format as the nuScenes dataset, we recommend directly implementing a new data converter and a dataset class to convert the data and load the data, respectively. In this procedure, the code can inherit from the existing dataset classes to reuse the code.
### Reorganize new data format to middle format
There is also a way if users do not want to convert the annotation format to existing formats.
Actually, we convert all the supported datasets into pickle files, which summarize useful information for model training and inference.
The annotation of a dataset is a list of dict, each dict corresponds to a frame.
A basic example (used in KITTI) is as follows. A frame consists of several keys, like `image`, `point_cloud`, `calib` and `annos`.
As long as we could directly read data according to these information, the organization of raw data could also be different from existing ones.
With this design, we provide an alternative choice for customizing datasets.
```python
[
{'image': {'image_idx': 0, 'image_path': 'training/image_2/000000.png', 'image_shape': array([ 370, 1224], dtype=int32)},
'point_cloud': {'num_features': 4, 'velodyne_path': 'training/velodyne/000000.bin'},
'calib': {'P0': array([[707.0493, 0. , 604.0814, 0. ],
[ 0. , 707.0493, 180.5066, 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]]),
'P1': array([[ 707.0493, 0. , 604.0814, -379.7842],
[ 0. , 707.0493, 180.5066, 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]]),
'P2': array([[ 7.070493e+02, 0.000000e+00, 6.040814e+02, 4.575831e+01],
[ 0.000000e+00, 7.070493e+02, 1.805066e+02, -3.454157e-01],
[ 0.000000e+00, 0.000000e+00, 1.000000e+00, 4.981016e-03],
[ 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]]),
'P3': array([[ 7.070493e+02, 0.000000e+00, 6.040814e+02, -3.341081e+02],
[ 0.000000e+00, 7.070493e+02, 1.805066e+02, 2.330660e+00],
[ 0.000000e+00, 0.000000e+00, 1.000000e+00, 3.201153e-03],
[ 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]]),
'R0_rect': array([[ 0.9999128 , 0.01009263, -0.00851193, 0. ],
[-0.01012729, 0.9999406 , -0.00403767, 0. ],
[ 0.00847068, 0.00412352, 0.9999556 , 0. ],
[ 0. , 0. , 0. , 1. ]]),
'Tr_velo_to_cam': array([[ 0.00692796, -0.9999722 , -0.00275783, -0.02457729],
[-0.00116298, 0.00274984, -0.9999955 , -0.06127237],
[ 0.9999753 , 0.00693114, -0.0011439 , -0.3321029 ],
[ 0. , 0. , 0. , 1. ]]),
'Tr_imu_to_velo': array([[ 9.999976e-01, 7.553071e-04, -2.035826e-03, -8.086759e-01],
[-7.854027e-04, 9.998898e-01, -1.482298e-02, 3.195559e-01],
[ 2.024406e-03, 1.482454e-02, 9.998881e-01, -7.997231e-01],
[ 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]])},
'annos': {'name': array(['Pedestrian'], dtype='<U10'), 'truncated': array([0.]), 'occluded': array([0]), 'alpha': array([-0.2]), 'bbox': array([[712.4 , 143. , 810.73, 307.92]]), 'dimensions': array([[1.2 , 1.89, 0.48]]), 'location': array([[1.84, 1.47, 8.41]]), 'rotation_y': array([0.01]), 'score': array([0.]), 'index': array([0], dtype=int32), 'group_ids': array([0], dtype=int32), 'difficulty': array([0], dtype=int32), 'num_points_in_gt': array([377], dtype=int32)}}
...
]
```
On top of this you can write a new Dataset class inherited from `Custom3DDataset`, and overwrite related methods,
like [KittiDataset](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/kitti_dataset.py) and [ScanNetDataset](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/scannet_dataset.py).
### An example of customized dataset
Here we provide an example of customized dataset.
Assume the annotation has been reorganized into a list of dict in pickle files like basic format.
The bounding boxes annotations are stored in `annotation.pkl` as the following
```
{'sample_idx': 120,
'lidar_points': {'lidar_path': 'training/000004.bin'},
'annos': {'bbox_type_3d': 'LiDAR',
'gt_bboxes_3d': array([[1.48129511, 3.52074146, 1.85652947, 1.74445975, 0.23195696, 0.57235193, -0.25525],
[ 2.90395617, -3.48033905, 1.52682471,[0.66077662, 0.17072392, 0.67153597, 2.23145]]),
'gt_names': ['car', 'pedestrian']
}
}
```
If the pkl only contains the necessary keys, you can directly use the `Custom3DDataset` for training:
Then in the config, to use `Custom3DDataset` you can modify the config as the following
```python
dataset_A_train = dict(
type='Custom3DDataset',
ann_file = 'annotation.pkl',
pipeline=train_pipeline
)
```
otherwise you need to create a new dataset in `mmdet3d/datasets/my_dataset.py` to load the data and rewrite the `get_ann_info` method.
```python
import numpy as np
from os import path as osp
from mmdet3d.core import show_result
from mmdet3d.core.bbox import DepthInstance3DBoxes
from mmdet.datasets import DATASETS
from .custom_3d import Custom3DDataset
@DATASETS.register_module()
class MyDataset(Custom3DDataset):
classes = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')
def __init__(self,
data_root,
ann_file,
pipeline=None,
classes=None,
modality=None,
box_type_3d='Depth',
filter_empty_gt=True,
test_mode=False):
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
classes=classes,
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode)
def get_ann_info(self, index):
# Use index to get the annos, thus the evalhook could also use this api
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0, ), dtype=np.int64)
# to target box structure
gt_bboxes_3d = DepthInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
with_yaw=False,
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
pts_instance_mask_path = osp.join(self.data_root,
info['pts_instance_mask_path'])
pts_semantic_mask_path = osp.join(self.data_root,
info['pts_semantic_mask_path'])
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
pts_instance_mask_path=pts_instance_mask_path,
pts_semantic_mask_path=pts_semantic_mask_path)
return anns_results
```
Then in the config, to use `MyDataset` you can modify the config as the following
```python
dataset_A_train = dict(
type='MyDataset',
ann_file = 'annotation.pkl',
pipeline=train_pipeline
)
```
## Customize datasets by dataset wrappers
MMDetection3D also supports many dataset wrappers to mix the dataset or modify the dataset distribution for training like MMDetection.
Currently it supports to three dataset wrappers as below:
- `RepeatDataset`: simply repeat the whole dataset.
- `ClassBalancedDataset`: repeat dataset in a class balanced manner.
- `ConcatDataset`: concat datasets.
### Repeat dataset
We use `RepeatDataset` as wrapper to repeat the dataset. For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following
```python
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)
```
### Class balanced dataset
We use `ClassBalancedDataset` as wrapper to repeat the dataset based on category
frequency. The dataset to repeat needs to instantiate function `self.get_cat_ids(idx)`
to support `ClassBalancedDataset`.
For example, to repeat `Dataset_A` with `oversample_thr=1e-3`, the config looks like the following
```python
dataset_A_train = dict(
type='ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)
```
You may refer to [source code](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/dataset_wrappers.py) for details.
### Concatenate dataset
There are three ways to concatenate the dataset.
1. If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following.
```python
dataset_A_train = dict(
type='Dataset_A',
ann_file = ['anno_file_1', 'anno_file_2'],
pipeline=train_pipeline
)
```
If the concatenated dataset is used for test or evaluation, this manner supports to evaluate each dataset separately. To test the concatenated datasets as a whole, you can set `separate_eval=False` as below.
```python
dataset_A_train = dict(
type='Dataset_A',
ann_file = ['anno_file_1', 'anno_file_2'],
separate_eval=False,
pipeline=train_pipeline
)
```
2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.
```python
dataset_A_train = dict()
dataset_B_train = dict()
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train = [
dataset_A_train,
dataset_B_train
],
val = dataset_A_val,
test = dataset_A_test
)
```
If the concatenated dataset is used for test or evaluation, this manner also supports to evaluate each dataset separately.
3. We also support to define `ConcatDataset` explicitly as the following.
```python
dataset_A_val = dict()
dataset_B_val = dict()
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dataset_A_train,
val=dict(
type='ConcatDataset',
datasets=[dataset_A_val, dataset_B_val],
separate_eval=False))
```
This manner allows users to evaluate all the datasets as a single one by setting `separate_eval=False`.
**Note:**
1. The option `separate_eval=False` assumes the datasets use `self.data_infos` during evaluation. Therefore, COCO datasets do not support this behavior since COCO datasets do not fully rely on `self.data_infos` for evaluation. Combining different types of datasets and evaluating them as a whole is not tested thus is not suggested.
2. Evaluating `ClassBalancedDataset` and `RepeatDataset` is not supported thus evaluating concatenated datasets of these types is also not supported.
A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following.
```python
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict(
type='Dataset_A',
...
pipeline=train_pipeline
)
)
dataset_A_val = dict(
...
pipeline=test_pipeline
)
dataset_A_test = dict(
...
pipeline=test_pipeline
)
dataset_B_train = dict(
type='RepeatDataset',
times=M,
dataset=dict(
type='Dataset_B',
...
pipeline=train_pipeline
)
)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train = [
dataset_A_train,
dataset_B_train
],
val = dataset_A_val,
test = dataset_A_test
)
```
## Modify Dataset Classes
With existing dataset types, we can modify the class names of them to train subset of the annotations.
For example, if you want to train only three classes of the current dataset,
you can modify the classes of dataset.
The dataset will filter out the ground truth boxes of other classes automatically.
```python
classes = ('person', 'bicycle', 'car')
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
```
MMDetection V2.0 also supports to read the classes from a file, which is common in real applications.
For example, assume the `classes.txt` contains the name of classes as the following.
```
person
bicycle
car
```
Users can set the classes as a file path, the dataset will load it and convert it to a list automatically.
```python
classes = 'path/to/classes.txt'
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
```
## Loading Point Clouds Adjustment
Generally speaking, the most basic bin data contains (x, y, z) information, and some also include intensity, elongation (point cloud elongation), timestamp, and the point cloud dimension ranges from 3 to 6. In MMDetection3D, you need to adjust the some settings in config while customized dataset training:
```python
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
# adjust accordingly according to the dimension
# of the point cloud of your own dataset
load_dim=3,
# actually used dimension,you can also specify the
# specific dimension in list format
use_dim=3),
```
## Training Setting Adjustment
In order to avoid some problems in the training process and improve the performance of the model on the custom dataset, some training settings need to be adjusted according to the dataset.
### Adjust Point Cloud Range and Annotations in Config
For example, we can adjust `point_cloud_range` in config file to change training point cloud range. In KITTI dataset, the `point_cloud_range` is set to be `[0, -39.68, -3, 69.12, 39.68, 1]`.
By setting point cloud range, the `PointsRangeFilter` is used to filter point cloud and its mask (semantic and instance), and `ObjectRangeFilter` is used to filter 3D bounding boxes.
```python
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
```
### Adjust Voxel Size in Config
Here you can refer to the setting of the existing datasets. theoretically, `voxel_size` is linked to the setting of `point_cloud_range`. Setting a smaller `voxel_size` will increase the voxel num and the corresponding memory consumption. In addition, the following issues need to be noted:
if the `point_cloud_range` and `voxel_size` are set to be `[0, -40, -3, 70.4, 40, 1]` and `[0.05, 0.05, 0.1]` respectively, then the shape of intermediate feature map should be `[(1-(-3))/0.1+1, (40-(-40))/0.05, (70.4-0)/0.05]=[41, 1600, 1408]`. More details refers to this [issue](https://github.com/open-mmlab/mmdetection3d/issues/382).
### Adjust Anchor Range and Size in Config
```python
anchor_generator=dict(
type='Anchor3DRangeGenerator',
ranges=[
[0, -40.0, -0.6, 70.4, 40.0, -0.6],
[0, -40.0, -0.6, 70.4, 40.0, -0.6],
[0, -40.0, -1.78, 70.4, 40.0, -1.78],
],
sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
rotations=[0, 1.57],
reshape_out=False),
```
Regarding the setting of `anchor_range`, it is generally adjusted according to dataset. Note that `z` value needs to be adjusted accordingly to the position of the point cloud, please refer to this [issue](https://github.com/open-mmlab/mmdetection3d/issues/986).
Regarding the setting of `anchor_size`, it is usually necessary to count the average length, width and height of the entire training dataset as `anchor_size` to obtain the best results.
**Note** (related to MMDetection):
- Before MMDetection v2.5.0, the dataset will filter out the empty GT images automatically if the classes are set and there is no way to disable that through config. This is an undesirable behavior and introduces confusion because if the classes are not set, the dataset only filters the empty GT images when `filter_empty_gt=True` and `test_mode=False`. After MMDetection v2.5.0, we decouple the image filtering process and the classes modification, i.e., the dataset will only filter empty GT images when `filter_empty_gt=True` and `test_mode=False`, no matter whether the classes are set. Thus, setting the classes only influences the annotations of classes used for training and users could decide whether to filter empty GT images by themselves.
- Since the middle format only has box labels and does not contain the class names, when using `CustomDataset`, users cannot filter out the empty GT images through configs but only do this offline.
- The features for setting dataset classes and dataset filtering will be refactored to be more user-friendly in the future (depends on the progress).
|