File size: 4,057 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
_base_ = [
    '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
]
prior_generator = dict(
    type='AlignedAnchor3DRangeGenerator',
    ranges=[[-3.2, -0.2, -2.28, 3.2, 6.2, 0.28]],
    rotations=[.0])
model = dict(
    type='ImVoxelNet',
    data_preprocessor=dict(
        type='Det3DDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=32),
    backbone=dict(
        type='mmdet.ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=False),
        norm_eval=True,
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
        style='pytorch'),
    neck=dict(
        type='mmdet.FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=4),
    neck_3d=dict(
        type='IndoorImVoxelNeck',
        in_channels=256,
        out_channels=128,
        n_blocks=[1, 1, 1]),
    bbox_head=dict(
        type='ImVoxelHead',
        n_classes=10,
        n_levels=3,
        n_channels=128,
        n_reg_outs=7,
        pts_assign_threshold=27,
        pts_center_threshold=18,
        prior_generator=prior_generator),
    prior_generator=prior_generator,
    n_voxels=[40, 40, 16],
    coord_type='DEPTH',
    train_cfg=dict(),
    test_cfg=dict(nms_pre=1000, iou_thr=.25, score_thr=.01))

dataset_type = 'SUNRGBDDataset'
data_root = 'data/sunrgbd/'
class_names = [
    'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
    'night_stand', 'bookshelf', 'bathtub'
]
metainfo = dict(CLASSES=class_names)

backend_args = None

train_pipeline = [
    dict(type='LoadAnnotations3D', backend_args=backend_args),
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='RandomResize', scale=[(512, 384), (768, 576)], keep_ratio=True),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='Resize', scale=(640, 480), keep_ratio=True),
    dict(type='Pack3DDetInputs', keys=['img'])
]

train_dataloader = dict(
    batch_size=4,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file='sunrgbd_infos_train.pkl',
            pipeline=train_pipeline,
            test_mode=False,
            filter_empty_gt=True,
            box_type_3d='Depth',
            metainfo=metainfo,
            backend_args=backend_args)))
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='sunrgbd_infos_val.pkl',
        pipeline=test_pipeline,
        test_mode=True,
        box_type_3d='Depth',
        metainfo=metainfo,
        backend_args=backend_args))
test_dataloader = val_dataloader

val_evaluator = dict(
    type='IndoorMetric',
    ann_file=data_root + 'sunrgbd_infos_val.pkl',
    metric='bbox')
test_evaluator = val_evaluator

# optimizer
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(
        _delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001),
    paramwise_cfg=dict(
        custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}),
    clip_grad=dict(max_norm=35., norm_type=2))
param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=12,
        by_epoch=True,
        milestones=[8, 11],
        gamma=0.1)
]

# hooks
default_hooks = dict(checkpoint=dict(type='CheckpointHook', max_keep_ckpts=1))

# runtime
find_unused_parameters = True  # only 1 of 4 FPN outputs is used