File size: 25,521 Bytes
4c86b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
<div align="center">
  <img src="resources/mmdet3d-logo.png" width="600"/>
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>

[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)

[๐Ÿ“˜Documentation](https://mmdetection3d.readthedocs.io/en/latest/) |
[๐Ÿ› ๏ธInstallation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) |
[๐Ÿ‘€Model Zoo](https://mmdetection3d.readthedocs.io/en/latest/model_zoo.html) |
[๐Ÿ†•Update News](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[๐Ÿš€Ongoing Projects](https://github.com/open-mmlab/mmdetection3d/projects) |
[๐Ÿค”Reporting Issues](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)

</div>

<div align="center">

English | [็ฎ€ไฝ“ไธญๆ–‡](README_zh-CN.md)

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>

## Introduction

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the [OpenMMLab](https://openmmlab.com/) project.

The main branch works with **PyTorch 1.8+**.

![demo image](resources/mmdet3d_outdoor_demo.gif)

<details open>
<summary>Major features</summary>

- **Support multi-modality/single-modality detectors out of box**

  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.

- **Support indoor/outdoor 3D detection out of box**

  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages).

- **Natural integration with 2D detection**

  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.

- **High efficiency**

  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/notes/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `โœ—`.

  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
  |       VoteNet       |      358      |                          โœ—                           |                           77                           |                      โœ—                      |
  |  PointPillars-car   |      141      |                          โœ—                           |                           โœ—                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           โœ—                            |                      โœ—                      |
  |       SECOND        |      40       |                          30                          |                           โœ—                            |                      โœ—                      |
  |       Part-A2       |      17       |                          14                          |                           โœ—                            |                      โœ—                      |

</details>

Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.

## What's New

### Highlight

In version 1.4, MMDetecion3D refactors the Waymo dataset and accelerates the preprocessing, training/testing setup, and evaluation of Waymo dataset. We also extends the support for camera-based, such as Monocular and BEV, 3D object detection models on Waymo. A detailed description of the Waymo data information is provided [here](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html).

Besides, in version 1.4, MMDetection3D provides [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_mini.tar.gz) to help community users get started with Waymo and use it for quick iterative development.

**v1.4.0** was released in 8/1/2024๏ผš

- Support the training of [DSVT](<(https://arxiv.org/abs/2301.06051)>) in `projects`
- Support [Nerf-Det](https://arxiv.org/abs/2307.14620) in `projects`
- Refactor Waymo dataset

**v1.3.0** was released in 18/10/2023:

- Support [CENet](https://arxiv.org/abs/2207.12691) in `projects`
- Enhance demos with new 3D inferencers

**v1.2.0** was released in 4/7/2023

- Support [New Config Type](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta) in `mmdet3d/configs`
- Support the inference of [DSVT](<(https://arxiv.org/abs/2301.06051)>) in `projects`
- Support downloading datasets from [OpenDataLab](https://opendatalab.com/) using `mim`

**v1.1.1** was released in 30/5/2023:

- Support [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf) in `projects`
- Support the training of BEVFusion in `projects`
- Support lidar-based 3D semantic segmentation benchmark

## Installation

Please refer to [Installation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) for installation instructions.

## Getting Started

For detailed user guides and advanced guides, please refer to our [documentation](https://mmdetection3d.readthedocs.io/en/latest/):

<details>
<summary>User Guides</summary>

- [Train & Test](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#train-test)
  - [Learn about Configs](https://mmdetection3d.readthedocs.io/en/latest/user_guides/config.html)
  - [Coordinate System](https://mmdetection3d.readthedocs.io/en/latest/user_guides/coord_sys_tutorial.html)
  - [Dataset Preparation](https://mmdetection3d.readthedocs.io/en/latest/user_guides/dataset_prepare.html)
  - [Customize Data Pipelines](https://mmdetection3d.readthedocs.io/en/latest/user_guides/data_pipeline.html)
  - [Test and Train on Standard Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/train_test.html)
  - [Inference](https://mmdetection3d.readthedocs.io/en/latest/user_guides/inference.html)
  - [Train with Customized Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/new_data_model.html)
- [Useful Tools](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#useful-tools)

</details>

<details>
<summary>Advanced Guides</summary>

- [Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#datasets)
  - [KITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/kitti.html)
  - [NuScenes Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/nuscenes.html)
  - [Lyft Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/lyft.html)
  - [Waymo Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html)
  - [SUN RGB-D Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/sunrgbd.html)
  - [ScanNet Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/scannet.html)
  - [S3DIS Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/s3dis.html)
  - [SemanticKITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/semantickitti.html)
- [Supported Tasks](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#supported-tasks)
  - [LiDAR-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_det3d.html)
  - [Vision-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/vision_det3d.html)
  - [LiDAR-Based 3D Semantic Segmentation](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [Customization](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#customization)
  - [Customize Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_dataset.html)
  - [Customize Models](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_models.html)
  - [Customize Runtime Settings](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_runtime.html)

</details>

## Overview of Benchmark and Model Zoo

Results and models are available in the [model zoo](docs/en/model_zoo.md).

<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
        <li>MinkResNet (CVPR'2019)</li>
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
        <b>LiDAR-based 3D Object Detection</b>
      </td>
      <td>
        <b>Camera-based 3D Object Detection</b>
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
            <li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
            <li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li>
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
          <li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li>
          <li><a href="projects/PETR">PETR (ECCV'2022)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
          <li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
          <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
          <li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

|               | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
| PointPillars  |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ“    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|  FreeAnchor   |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ“    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|    VoteNet    |   โœ—    |   โœ—    |   โœ—    |     โœ“      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|    H3DNet     |   โœ—    |   โœ—    |   โœ—    |     โœ“      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|     3DSSD     |   โœ—    |   โœ—    |   โœ—    |     โœ“      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|    Part-A2    |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|    MVXNet     |   โœ“    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|  CenterPoint  |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|      SSN      |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ“    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|   ImVoteNet   |   โœ“    |   โœ—    |   โœ—    |     โœ“      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|    FCOS3D     |   โœ“    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|  PointNet++   |   โœ—    |   โœ—    |   โœ—    |     โœ“      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
| Group-Free-3D |   โœ—    |   โœ—    |   โœ—    |     โœ“      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|  ImVoxelNet   |   โœ“    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|    PAConv     |   โœ—    |   โœ—    |   โœ—    |     โœ“      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|     DGCNN     |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ“   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|     SMOKE     |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ“  |     โœ—      |     โœ—      |    โœ—     |
|      PGD      |   โœ“    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|   MonoFlex    |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ“  |     โœ—      |     โœ—      |    โœ—     |
|    SA-SSD     |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|    FCAF3D     |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ“      |     โœ—      |    โœ—     |
|    PV-RCNN    |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|  Cylinder3D   |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ“      |    โœ—     |
|   MinkUNet    |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ“     |
|    SPVCNN     |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ“     |
|   BEVFusion   |   โœ—    |   โœ—    |   โœ“    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
| CenterFormer  |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ“    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|     TR3D      |   โœ—    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ“      |     โœ—      |    โœ—     |
|    DETR3D     |   โœ“    |   โœ“    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|     PETR      |   โœ—    |   โœ“    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |
|   TPVFormer   |   โœ“    |   โœ—    |   โœ—    |     โœ—      |   โœ—    |   โœ—   |    โœ—    |  โœ—  |     โœ—      |     โœ—      |    โœ—     |

**Note:** All the about **500+ models, methods of 90+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.

## FAQ

Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.

## Contributing

We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](docs/en/notes/contribution_guides.md) for the contributing guideline.

## Acknowledgement

MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.

## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Projects in OpenMMLab

- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.