File size: 2,056 Bytes
da3bea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
language:
- pt
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- RodrigoLimaRFL/nurc-sp_pseudo_labelled
metrics:
- wer
model-index:
- name: Whisper-Tiny-PTBR
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: nurc-sp_pseudo_labelled
      type: RodrigoLimaRFL/nurc-sp_pseudo_labelled
    metrics:
    - name: Wer
      type: wer
      value: 59.38036802234333
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper-Tiny-PTBR

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the nurc-sp_pseudo_labelled dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0137
- Wer: 59.3804

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.2522        | 0.5094 | 1000 | 1.1713          | 74.6895 |
| 1.0397        | 1.0188 | 2000 | 1.0796          | 68.5537 |
| 0.9879        | 1.5283 | 3000 | 1.0420          | 62.4686 |
| 0.9334        | 2.0377 | 4000 | 1.0195          | 59.7845 |
| 0.9834        | 2.5471 | 5000 | 1.0137          | 59.3804 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1