base_model:
- unsloth/Llama-3.2-1B-Instruct
library_name: transformers
language:
- en
license: cc0-1.0
tags:
- unsloth
- gguf
WIP! Results for now are total trash and not worth your time! almost not working! Finnnegan's birth at best, but closer to him being concieved yet. Too far from his wake! No word-play at all!
PEFT Finnegan-tuned LLaMA 3.2-1B-instruct on part of Finnegans Wake dataset for text generation in the style of James Joyce.
Space: https://huggingface.co/spaces/genaforvena/huivam_finnegans_spaceship
Iteration 3:
Realized that was doing it all wrong and this tie used https://huggingface.co/unsloth/Llama-3.2-1B-Instruct and collab available from there. Only changed dataset.
My collab is here: https://colab.research.google.com/drive/1JrqcU9idXXR3Wru5mw2e6Uh2TKJWwu7U?usp=sharing
The only difference: Created dataset like below
from unsloth.chat_templates import get_chat_template
import json
import random
from transformers import AutoTokenizer
from unsloth.chat_templates import get_chat_template # For chat template formatting
from datasets import Dataset, load_dataset
# Configuration
INPUT_FILE = "finnegans_30.txt" # Path to your Finnegans Wake text file
OUTPUT_FILE = "finnegans_wake_dataset.jsonl" # Local file to save the dataset
CHUNK_SIZE = 24
# Apply the chat template
tokenizer = get_chat_template(
tokenizer,
chat_template="llama-3.1", # Use the LLaMA-3.1 chat template
)
# Load the text
with open(INPUT_FILE, "r", encoding="utf-8") as file:
text = file.read()
# Tokenize the text
tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False)
# Split tokens into chunks
chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)]
# Prepare dataset in conversational format
dataset = []
for chunk in chunks:
chunk_text = tokenizer.decode(chunk, skip_special_tokens=True)
# Split the chunk into three parts randomly
split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points
context = chunk_text[:split_points[0]]
instruction = chunk_text[split_points[0]:split_points[1]]
response = chunk_text[split_points[1]:]
# Format as a conversation
conversation = [
{"role": "user", "content": f"### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction}"},
{"role": "assistant", "content": response},
]
# Add to dataset
dataset.append({"conversations": conversation})
# Save dataset locally as a .jsonl file
with open(OUTPUT_FILE, "w", encoding="utf-8") as file:
for item in dataset:
json.dump(item, file)
file.write("\n")
print(f"Dataset saved locally to {OUTPUT_FILE}")
# Apply the formatting function
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=False) for convo in convos]
return {"text": texts}
# Apply the formatting function using Dataset.from_dict
dataset = Dataset.from_dict({"conversations": [d['conversations'] for d in dataset]})
formatted_dataset = dataset.map(formatting_prompts_func, batched=True, remove_columns=['conversations'])
# Save the formatted dataset
formatted_dataset.to_json("formatted_finnegans_wake_dataset.jsonl")
print("Formatted dataset saved to formatted_finnegans_wake_dataset.jsonl")
# Load the formatted dataset using load_dataset
dataset = load_dataset("json", data_files="formatted_finnegans_wake_dataset.jsonl", split="train")
dataset = dataset
Iteration 2 (Fail):
Dataset: same (forgot to save config with new dataset).
finnetune.yaml:
# The ID of the dataset you created
dataset: huivam-finnegans-2
# Configuration for text completion fine-tuning
text_completion:
# How the fields of the JSON dataset should be formatted into the input text
input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
# How the fields of the JSON dataset should be formatted into the output text
output_template: "ANSWER: {response}"
# The Fireworks model name of the base model
base_model: accounts/fireworks/models/llama-v3p2-1b-instruct
Finne-tuning commands used:
./firectl create dataset huivam-finnegans-2 .\finnegans_wake_dataset_2.jsonl
./firectl create fine-tuning-job --settings-file finnetune.yaml --epochs=3 --learning-rate=2e-5 --batch-size=8
New params used to finne-tune:
Text Completion:
Input Template: ### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS:
Output Template: ANSWER: {response}
Base Model: accounts/fireworks/models/llama-v3p2-1b-instruct
Epochs: 3
Learning Rate: 2e-05
Lora Rank: 8
Batch Size: 8
Evaluation Split: 0
Spent: $0.08 Time: 5 mins
Iteration 1:
Dataset I prepared like that:
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Load the text
with open(INPUT_FILE, "r", encoding="utf-8") as file:
text = file.read()
# Tokenize the text
tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False)
# Split tokens into chunks
chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)]
# Prepare dataset
dataset = []
for chunk in chunks:
chunk_text = tokenizer.decode(chunk, skip_special_tokens=True)
# Split the chunk into three parts randomly
split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points
context = chunk_text[:split_points[0]]
instruction = chunk_text[split_points[0]:split_points[1]]
response = chunk_text[split_points[1]:]
# Add to dataset
dataset.append({
"context": context,
"instruction": instruction,
"response": response,
})
# Save dataset locally as a .jsonl file
with open(OUTPUT_FILE, "w", encoding="utf-8") as file:
for item in dataset:
json.dump(item, file)
file.write("\n")
print(f"Dataset saved locally to {OUTPUT_FILE}")
Example of dataset entry:
{"context": "riverrun, past Eve and Adam's, from swerve of shore to bend of bay...", "instruction": "Sir Tristram, violer d'amores, fr'over the short sea...", "response": "O here here how hoth sprowled met the duskt the father of fornicationists..."}
fine-tuned on 1/10th of text on fireworks.ai with params:
dataset: finnegans_wake_dataset
text_completion:
# How the fields of the JSON dataset should be formatted into the input text
input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
# How the fields of the JSON dataset should be formatted into the output text
output_template: "ANSWER: {response}"
# The Fireworks model name of the base model
base_model: accounts/fireworks/models/llama-v3p2-1b
# Hyperparameters for fine-tuning (should be passed as args and removed from here)
hyperparameters:
learning_rate: 1e-5 # Learning rate for the optimizer
epochs: 1 # Number of epochs to train
batch_size: 4 # Batch size for training
Spent: $0.01 Time: 2 mins
Result: Seemingly not enough data to affect model output.