gcperk20's picture
End of training
6582364
|
raw
history blame
3.02 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-small-patch16-224-finetuned-piid
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: val
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7808219178082192

deit-small-patch16-224-finetuned-piid

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5296
  • Accuracy: 0.7808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1537 0.98 20 1.0005 0.5479
0.7025 2.0 41 0.8481 0.5936
0.6581 2.98 61 0.6351 0.7215
0.5019 4.0 82 0.6696 0.7215
0.4708 4.98 102 0.5861 0.7534
0.3647 6.0 123 0.5584 0.7763
0.2973 6.98 143 0.5784 0.7671
0.2827 8.0 164 0.5851 0.7671
0.237 8.98 184 0.6791 0.7626
0.2505 10.0 205 0.5550 0.7626
0.2018 10.98 225 0.5446 0.7626
0.1841 12.0 246 0.5497 0.7443
0.1692 12.98 266 0.5917 0.7717
0.1624 14.0 287 0.5254 0.7763
0.1518 14.98 307 0.5296 0.7808
0.1275 16.0 328 0.5858 0.7626
0.1107 16.98 348 0.5919 0.7763
0.1192 18.0 369 0.6027 0.7717
0.0842 18.98 389 0.6435 0.7717
0.1472 19.51 400 0.6202 0.7671

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3