|
--- |
|
language: mr |
|
datasets: |
|
- openslr |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: OpenSLR mr |
|
type: openslr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 14.53 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Marathi |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
# test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") |
|
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
# test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. |
|
|
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") |
|
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), |
|
attention_mask=inputs.attention_mask.to("cuda")).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result**: 14.53 % |
|
|
|
## Training |
|
|
|
90% of the OpenSLR Marathi dataset was used for training. |
|
The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1_BbLyLqDUsXG3RpSULfLRjC6UY3RjwME?usp=sharing). |
|
|