gchhablani commited on
Commit
af1173e
1 Parent(s): ae83157

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: cnh
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: Wav2Vec2 Large 53 Hakha Chin by Gunjan Chhablani
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice cnh
21
+ type: common_voice
22
+ args: cnh
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 31.38
27
+ ---
28
+
29
+ # Wav2Vec2-Large-XLSR-53-Hakha-Chin
30
+
31
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hakha Chin using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
32
+ When using this model, make sure that your speech input is sampled at 16kHz.
33
+
34
+ ## Usage
35
+
36
+ The model can be used directly (without a language model) as follows:
37
+
38
+ ```python
39
+ import torch
40
+ import torchaudio
41
+ from datasets import load_dataset
42
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
43
+
44
+ test_dataset = load_dataset("common_voice", "cnh", split="test[:2%]")
45
+
46
+ processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
47
+ model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh/")
48
+
49
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
50
+
51
+ # Preprocessing the datasets.
52
+ # We need to read the aduio files as arrays
53
+ def speech_file_to_array_fn(batch):
54
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ return batch
57
+
58
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
59
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
+
61
+ with torch.no_grad():
62
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
+
64
+ predicted_ids = torch.argmax(logits, dim=-1)
65
+
66
+ print("Prediction:", processor.batch_decode(predicted_ids))
67
+ print("Reference:", test_dataset["sentence"][:2])
68
+ ```
69
+
70
+
71
+ ## Evaluation
72
+
73
+ The model can be evaluated as follows on the Portuguese test data of Common Voice.
74
+
75
+
76
+ ```python
77
+ import torch
78
+ import torchaudio
79
+ from datasets import load_dataset, load_metric
80
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
81
+ import re
82
+
83
+ test_dataset = load_dataset("common_voice", "cnh", split="test")
84
+ wer = load_metric("wer")
85
+
86
+
87
+ processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
88
+ model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
89
+ model.to("cuda")
90
+
91
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\/]'
92
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
+
94
+ # Preprocessing the datasets.
95
+ # We need to read the aduio files as arrays
96
+ def speech_file_to_array_fn(batch):
97
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ return batch
101
+
102
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
103
+
104
+ # Preprocessing the datasets.
105
+ # We need to read the aduio files as arrays
106
+ def evaluate(batch):
107
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
+
109
+ with torch.no_grad():
110
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
+ pred_ids = torch.argmax(logits, dim=-1)
112
+
113
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ return batch
115
+
116
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
+
118
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
+ ```
120
+
121
+ **Test Result**: 31.38 %
122
+
123
+ ## Training
124
+
125
+ The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://github.com/jqueguiner/wav2vec2-sprint/blob/main/run_common_voice.py).
126
+ The parameters passed were:
127
+
128
+ ```bash
129
+ #!/usr/bin/env bash
130
+ python run_common_voice.py \\
131
+ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \\
132
+ --dataset_config_name="pt" \\
133
+ --output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \\
134
+ --cache_dir=/workspace/data \\
135
+ --overwrite_output_dir \\
136
+ --num_train_epochs="30" \\
137
+ --per_device_train_batch_size="32" \\
138
+ --per_device_eval_batch_size="32" \\
139
+ --evaluation_strategy="steps" \\
140
+ --learning_rate="3e-4" \\
141
+ --warmup_steps="500" \\
142
+ --fp16 \\
143
+ --freeze_feature_extractor \\
144
+ --save_steps="500" \\
145
+ --eval_steps="500" \\
146
+ --save_total_limit="1" \\
147
+ --logging_steps="500" \\
148
+ --group_by_length \\
149
+ --feat_proj_dropout="0.0" \\
150
+ --layerdrop="0.1" \\
151
+ --gradient_checkpointing \\
152
+ --do_train --do_eval \\
153
+ ```
154
+
155
+ Notebook containing the evaluation can be found [here](https://colab.research.google.com/drive/1pejk9gv9vMcUOjyVQ_vsV2ngW4NiWLWy?usp=sharing).