|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: fnet-base-finetuned-mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7720588235294118 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8502415458937198 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fnet-base-finetuned-mrpc |
|
|
|
This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9653 |
|
- Accuracy: 0.7721 |
|
- F1: 0.8502 |
|
- Combined Score: 0.8112 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: |
|
|
|
```bash |
|
#!/usr/bin/bash |
|
|
|
python ../run_glue.py \ |
|
--model_name_or_path google/fnet-base \ |
|
--task_name mrpc \ |
|
--do_train \ |
|
--do_eval \ |
|
--max_seq_length 512 \ |
|
--per_device_train_batch_size 16 \ |
|
--learning_rate 2e-5 \ |
|
--num_train_epochs 5 \ |
|
--output_dir fnet-base-finetuned-mrpc \ |
|
--push_to_hub \ |
|
--hub_strategy all_checkpoints \ |
|
--logging_strategy epoch \ |
|
--save_strategy epoch \ |
|
--evaluation_strategy epoch \ |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.544 | 1.0 | 230 | 0.5272 | 0.7328 | 0.8300 | 0.7814 | |
|
| 0.4034 | 2.0 | 460 | 0.6211 | 0.7255 | 0.8298 | 0.7776 | |
|
| 0.2602 | 3.0 | 690 | 0.9110 | 0.7230 | 0.8306 | 0.7768 | |
|
| 0.1688 | 4.0 | 920 | 0.8640 | 0.7696 | 0.8489 | 0.8092 | |
|
| 0.0913 | 5.0 | 1150 | 0.9653 | 0.7721 | 0.8502 | 0.8112 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.0.dev0 |
|
- Pytorch 1.9.0 |
|
- Datasets 1.12.1 |
|
- Tokenizers 0.10.3 |
|
|