gchhablani's picture
update model card README.md
325d21a
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-large-cased-finetuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6838235294117647
- name: F1
type: f1
value: 0.8122270742358079
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-finetuned-mrpc
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6274
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6441 | 1.0 | 917 | 0.6370 | 0.6838 | 0.8122 | 0.7480 |
| 0.6451 | 2.0 | 1834 | 0.6553 | 0.6838 | 0.8122 | 0.7480 |
| 0.6428 | 3.0 | 2751 | 0.6332 | 0.6838 | 0.8122 | 0.7480 |
| 0.6476 | 4.0 | 3668 | 0.6248 | 0.6838 | 0.8122 | 0.7480 |
| 0.6499 | 5.0 | 4585 | 0.6274 | 0.6838 | 0.8122 | 0.7480 |
### Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3