metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
- fnet-bert-base-comparison
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: bert-base-cased-finetuned-stsb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.8897907271421561
bert-base-cased-finetuned-stsb
This model is a fine-tuned version of bert-base-cased on the GLUE STSB dataset. It achieves the following results on the evaluation set:
- Loss: 0.4861
- Pearson: 0.8926
- Spearmanr: 0.8898
- Combined Score: 0.8912
The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
This model is trained using the run_glue script. The following command was used:
#!/usr/bin/bash
python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name stsb \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-stsb \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:|
| 1.1174 | 1.0 | 360 | 0.8816 | 0.5000 | 0.8832 | 0.8800 |
| 0.3835 | 2.0 | 720 | 0.8901 | 0.4672 | 0.8915 | 0.8888 |
| 0.2388 | 3.0 | 1080 | 0.8912 | 0.4861 | 0.8926 | 0.8898 |
### Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3