gchhablani's picture
Update README.md
0650f6b
|
raw
history blame
2.38 kB
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-cased-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9231651376146789
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-sst2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3649
- Accuracy: 0.9232
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used:
```bash
#!/usr/bin/bash
python ../run_glue.py \
--model_name_or_path bert-base-cased \
--task_name sst2 \
--do_train \
--do_eval \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir bert-base-cased-finetuned-sst2 \
--push_to_hub \
--hub_strategy all_checkpoints \
--logging_strategy epoch \
--save_strategy epoch \
--evaluation_strategy epoch \
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.233 | 1.0 | 4210 | 0.9174 | 0.2841 |
| 0.1261 | 2.0 | 8420 | 0.9278 | 0.3310 |
| 0.0768 | 3.0 | 12630 | 0.9232 | 0.3649 |
### Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3