File size: 13,737 Bytes
7542e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "aeeb11f4",
   "metadata": {},
   "source": [
    "# setup code"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "f0a10d21",
   "metadata": {},
   "outputs": [],
   "source": [
    "# libraries\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt \n",
    "import seaborn as sns\n",
    "#from sklearn import preprocessing \n",
    "import nltk\n",
    "from nltk.corpus import stopwords\n",
    "from nltk.tokenize import word_tokenize\n",
    "from nltk.tokenize import sent_tokenize\n",
    "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n",
    "from nltk.stem import WordNetLemmatizer\n",
    "from sklearn.feature_extraction.text import CountVectorizer\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "\n",
    "import pickle\n",
    "import time\n",
    "import re\n",
    "\n",
    "from imblearn.pipeline import Pipeline, make_pipeline\n",
    "from imblearn import datasets\n",
    "from imblearn.over_sampling import SMOTE\n",
    "\n",
    "from sklearn.ensemble import RandomForestClassifier\n",
    "from sklearn.model_selection import cross_val_score, GridSearchCV, train_test_split, KFold\n",
    "from sklearn.metrics import f1_score, accuracy_score, confusion_matrix, classification_report\n",
    "\n",
    "from sklearn.svm import SVC\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9a069011",
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv('training_set_full_v3.1.csv', low_memory=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "feb4075b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>index</th>\n",
       "      <th>Unnamed: 0.1</th>\n",
       "      <th>Unnamed: 0</th>\n",
       "      <th>without_stopwords</th>\n",
       "      <th>submission_grade</th>\n",
       "      <th>without_stopwords_lemm</th>\n",
       "      <th>sentiment</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>80</td>\n",
       "      <td>born tribe africa</td>\n",
       "      <td>1</td>\n",
       "      <td>born tribe africa</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>82</td>\n",
       "      <td>many customs</td>\n",
       "      <td>1</td>\n",
       "      <td>many customs</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>84</td>\n",
       "      <td>vagina circumcised girls gym class noticed lau...</td>\n",
       "      <td>1</td>\n",
       "      <td>vagina circumcised girls gym class noticed lau...</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>3</td>\n",
       "      <td>86</td>\n",
       "      <td>ashamed married age 12</td>\n",
       "      <td>1</td>\n",
       "      <td>ashamed married age 12</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>88</td>\n",
       "      <td>valuable less regards child marriage</td>\n",
       "      <td>1</td>\n",
       "      <td>valuable less regards child marriage</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3179</th>\n",
       "      <td>4574</td>\n",
       "      <td>1957</td>\n",
       "      <td>1957</td>\n",
       "      <td>I'm working class project following emojis con...</td>\n",
       "      <td>0</td>\n",
       "      <td>I'm working class project following emojis con...</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3180</th>\n",
       "      <td>4590</td>\n",
       "      <td>1973</td>\n",
       "      <td>1973</td>\n",
       "      <td>Write one paragraph parable Jewish people evil...</td>\n",
       "      <td>0</td>\n",
       "      <td>Write one paragraph parable Jewish people evil...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3181</th>\n",
       "      <td>4591</td>\n",
       "      <td>1974</td>\n",
       "      <td>1974</td>\n",
       "      <td>Pretend successful politician developed strong...</td>\n",
       "      <td>0</td>\n",
       "      <td>Pretend successful politician developed strong...</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3182</th>\n",
       "      <td>4592</td>\n",
       "      <td>1975</td>\n",
       "      <td>1975</td>\n",
       "      <td>Pretend Franklin Delano Roosevelt purposes his...</td>\n",
       "      <td>0</td>\n",
       "      <td>Pretend Franklin Delano Roosevelt purposes his...</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3183</th>\n",
       "      <td>4594</td>\n",
       "      <td>1977</td>\n",
       "      <td>1977</td>\n",
       "      <td>Write short story (only paragraph two) Elon Mu...</td>\n",
       "      <td>0</td>\n",
       "      <td>Write short story (only paragraph two) Elon Mu...</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>3184 rows × 7 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "      index  Unnamed: 0.1  Unnamed: 0  \\\n",
       "0         0             0          80   \n",
       "1         1             1          82   \n",
       "2         2             2          84   \n",
       "3         3             3          86   \n",
       "4         4             4          88   \n",
       "...     ...           ...         ...   \n",
       "3179   4574          1957        1957   \n",
       "3180   4590          1973        1973   \n",
       "3181   4591          1974        1974   \n",
       "3182   4592          1975        1975   \n",
       "3183   4594          1977        1977   \n",
       "\n",
       "                                      without_stopwords  submission_grade  \\\n",
       "0                                     born tribe africa                 1   \n",
       "1                                          many customs                 1   \n",
       "2     vagina circumcised girls gym class noticed lau...                 1   \n",
       "3                                ashamed married age 12                 1   \n",
       "4                  valuable less regards child marriage                 1   \n",
       "...                                                 ...               ...   \n",
       "3179  I'm working class project following emojis con...                 0   \n",
       "3180  Write one paragraph parable Jewish people evil...                 0   \n",
       "3181  Pretend successful politician developed strong...                 0   \n",
       "3182  Pretend Franklin Delano Roosevelt purposes his...                 0   \n",
       "3183  Write short story (only paragraph two) Elon Mu...                 0   \n",
       "\n",
       "                                 without_stopwords_lemm  sentiment  \n",
       "0                                     born tribe africa          0  \n",
       "1                                          many customs          0  \n",
       "2     vagina circumcised girls gym class noticed lau...          1  \n",
       "3                                ashamed married age 12          0  \n",
       "4                  valuable less regards child marriage          1  \n",
       "...                                                 ...        ...  \n",
       "3179  I'm working class project following emojis con...          1  \n",
       "3180  Write one paragraph parable Jewish people evil...          0  \n",
       "3181  Pretend successful politician developed strong...          1  \n",
       "3182  Pretend Franklin Delano Roosevelt purposes his...          1  \n",
       "3183  Write short story (only paragraph two) Elon Mu...          1  \n",
       "\n",
       "[3184 rows x 7 columns]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# split by grades\n",
    "accepted= df[(df['submission_grade']=='accepted')]\n",
    "rejected= df[(df['submission_grade']=='rejected')]\n",
    "#print(accepted.head())\n",
    "import warnings as wrn\n",
    "wrn.filterwarnings('ignore')\n",
    "accepted['submission_grade'] = 1\n",
    "rejected['submission_grade'] = 0\n",
    "data_df = pd.concat([accepted, rejected\n",
    "                 ],axis=0)\n",
    "\n",
    "data_df.reset_index()\n",
    "#data_df.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "eae05aa0",
   "metadata": {},
   "outputs": [],
   "source": [
    "new_df = data_df[~data_df['without_stopwords_lemm'].isnull()]\n",
    "corpus = new_df['without_stopwords_lemm'].dropna()\n",
    "tfidfvectorizer = TfidfVectorizer(analyzer='word',stop_words= 'english')\n",
    "tfidf_wm = tfidfvectorizer.fit_transform(corpus)\n",
    "tfidf_tokens = tfidfvectorizer.get_feature_names_out()\n",
    "df_tfidfvect = pd.DataFrame(data = tfidf_wm.toarray(),columns = tfidf_tokens)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "4275b4df",
   "metadata": {},
   "outputs": [],
   "source": [
    "y_df = new_df['submission_grade']\n",
    "#print(y_df.shape)\n",
    "y = np.asarray(y_df)\n",
    "#print(new_df)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "8e10d8bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "X = df_tfidfvect"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "1029bcd5",
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=45,stratify=y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "0e6785fb",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "              precision    recall  f1-score   support\n",
      "\n",
      "           0       0.88      0.94      0.90       594\n",
      "           1       0.76      0.60      0.67       199\n",
      "\n",
      "    accuracy                           0.85       793\n",
      "   macro avg       0.82      0.77      0.79       793\n",
      "weighted avg       0.85      0.85      0.85       793\n",
      "\n",
      "[[556  38]\n",
      " [ 79 120]]\n"
     ]
    }
   ],
   "source": [
    "from sklearn.pipeline import make_pipeline\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "m1 = SVC(C=1000,gamma=1,kernel='rbf',class_weight={0: 0.25, 1: 0.75})\n",
    "m1.fit(X_train, y_train)\n",
    "predic = m1.predict(X_test)\n",
    "print(classification_report(y_test,predic))\n",
    "print(confusion_matrix(y_test, predic))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c95ca92e",
   "metadata": {},
   "source": [
    "# Final model\n",
    "m1: name of final model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "ad98d1c6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "              precision    recall  f1-score   support\n",
      "\n",
      "           0       0.88      0.94      0.90       594\n",
      "           1       0.76      0.60      0.67       199\n",
      "\n",
      "    accuracy                           0.85       793\n",
      "   macro avg       0.82      0.77      0.79       793\n",
      "weighted avg       0.85      0.85      0.85       793\n",
      "\n",
      "[[556  38]\n",
      " [ 79 120]]\n"
     ]
    }
   ],
   "source": [
    "predic = m1.predict(X_test)\n",
    "print(classification_report(y_test,predic))\n",
    "print(confusion_matrix(y_test, predic))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}