File size: 58,624 Bytes
ef52d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e9ca44ab-68d4-4361-a7fb-1f887f1b06c0",
   "metadata": {
    "papermill": {
     "duration": 20.056463,
     "end_time": "2023-02-01T13:28:53.560235",
     "exception": false,
     "start_time": "2023-02-01T13:28:33.503772",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "!pip install -q transformers datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d5482d72-f55e-4b09-befc-a0b71fb0f6b3",
   "metadata": {
    "papermill": {
     "duration": 0.126709,
     "end_time": "2023-02-01T13:28:53.696755",
     "exception": false,
     "start_time": "2023-02-01T13:28:53.570046",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Warning: Unexpected command-line argument -f found.\n",
      "Warning: Unexpected command-line argument /root/.local/share/jupyter/runtime/kernel-92e2dce4-3520-4966-a7b3-b12619e1a0d7.json found.\n"
     ]
    }
   ],
   "source": [
    "import valohai\n",
    "\n",
    "valohai.prepare(\n",
    "    step='train-model',\n",
    "    image='pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime',    \n",
    "    default_parameters={        \n",
    "        'epochs': 10,\n",
    "        'model': 'google/mt5-small',\n",
    "    }\n",
    ")\n",
    "output_path = valohai.outputs().path('model')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "7d8321e3-caf8-4f1b-8f4e-568df5e9608c",
   "metadata": {
    "papermill": {
     "duration": 1.139645,
     "end_time": "2023-02-01T13:28:54.844272",
     "exception": false,
     "start_time": "2023-02-01T13:28:53.704627",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.7/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "cuda\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "\n",
    "torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
    "print(torch_device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f4484a17-8ba2-45a8-b537-24c44bb5bb7c",
   "metadata": {
    "papermill": {
     "duration": 0.782457,
     "end_time": "2023-02-01T13:28:55.633345",
     "exception": false,
     "start_time": "2023-02-01T13:28:54.850888",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mon Mar 27 07:02:29 2023       \n",
      "+-----------------------------------------------------------------------------+\n",
      "| NVIDIA-SMI 470.129.06   Driver Version: 470.129.06   CUDA Version: 11.4     |\n",
      "|-------------------------------+----------------------+----------------------+\n",
      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
      "|                               |                      |               MIG M. |\n",
      "|===============================+======================+======================|\n",
      "|   0  NVIDIA RTX A6000    On   | 00000000:05:00.0 Off |                  Off |\n",
      "| 30%   31C    P8    15W / 300W |      3MiB / 48685MiB |      0%      Default |\n",
      "|                               |                      |                  N/A |\n",
      "+-------------------------------+----------------------+----------------------+\n",
      "                                                                               \n",
      "+-----------------------------------------------------------------------------+\n",
      "| Processes:                                                                  |\n",
      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n",
      "|        ID   ID                                                   Usage      |\n",
      "|=============================================================================|\n",
      "|  No running processes found                                                 |\n",
      "+-----------------------------------------------------------------------------+\n"
     ]
    }
   ],
   "source": [
    "! nvidia-smi"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "73334e06-3bf2-4e94-9870-fe3a487398c3",
   "metadata": {
    "papermill": {
     "duration": 45.306651,
     "end_time": "2023-02-01T13:29:40.951034",
     "exception": false,
     "start_time": "2023-02-01T13:28:55.644383",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset wikisql (/root/.cache/huggingface/datasets/wikisql/default/0.1.0/7037bfe6a42b1ca2b6ac3ccacba5253b1825d31379e9cc626fc79a620977252d)\n",
      "Found cached dataset wikisql (/root/.cache/huggingface/datasets/wikisql/default/0.1.0/7037bfe6a42b1ca2b6ac3ccacba5253b1825d31379e9cc626fc79a620977252d)\n"
     ]
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "train_data = load_dataset('wikisql', split='train+validation')\n",
    "test_data = load_dataset('wikisql', split='test')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "cf5379de-aeb5-4a1c-8d23-9ad1e56dc445",
   "metadata": {
    "papermill": {
     "duration": 0.038407,
     "end_time": "2023-02-01T13:29:41.013026",
     "exception": false,
     "start_time": "2023-02-01T13:29:40.974619",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "def format_dataset(example):\n",
    " return {'input': 'translate to SQL: ' + example['question'] + ' table ID: ' + ', '.join(str(x) for x in example['table']['header']), 'target': example['sql']['human_readable']}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1ce6feef-eab2-4b7a-86f0-c663e5790c5d",
   "metadata": {
    "papermill": {
     "duration": 17.729786,
     "end_time": "2023-02-01T13:29:58.768354",
     "exception": false,
     "start_time": "2023-02-01T13:29:41.038568",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at /root/.cache/huggingface/datasets/wikisql/default/0.1.0/7037bfe6a42b1ca2b6ac3ccacba5253b1825d31379e9cc626fc79a620977252d/cache-1ea43016a8276f85.arrow\n"
     ]
    }
   ],
   "source": [
    "train_data = train_data.map(format_dataset, remove_columns=train_data.column_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "03862b72-56e4-40ab-aae2-81604f69d608",
   "metadata": {
    "papermill": {
     "duration": 4.566604,
     "end_time": "2023-02-01T13:30:03.373278",
     "exception": false,
     "start_time": "2023-02-01T13:29:58.806674",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at /root/.cache/huggingface/datasets/wikisql/default/0.1.0/7037bfe6a42b1ca2b6ac3ccacba5253b1825d31379e9cc626fc79a620977252d/cache-b9e3da7e258b7aa5.arrow\n"
     ]
    }
   ],
   "source": [
    "test_data = test_data.map(format_dataset, remove_columns=test_data.column_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "6246e5c3-4d91-4c65-9ee9-bfc366339e97",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: sentencepiece in /opt/conda/lib/python3.7/site-packages (0.1.97)\n",
      "Collecting protobuf==3.20.*\n",
      "  Downloading protobuf-3.20.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)\n",
      "\u001b[K     |████████████████████████████████| 1.0 MB 4.4 MB/s eta 0:00:01\n",
      "\u001b[?25hInstalling collected packages: protobuf\n",
      "  Attempting uninstall: protobuf\n",
      "    Found existing installation: protobuf 4.22.1\n",
      "    Uninstalling protobuf-4.22.1:\n",
      "      Successfully uninstalled protobuf-4.22.1\n",
      "Successfully installed protobuf-3.20.3\n"
     ]
    }
   ],
   "source": [
    "!pip install sentencepiece\n",
    "!pip install protobuf==3.20.*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "f162ac75-aeda-409a-af8c-f70f5a1d7cbd",
   "metadata": {
    "papermill": {
     "duration": 16.204849,
     "end_time": "2023-02-01T13:30:19.617815",
     "exception": false,
     "start_time": "2023-02-01T13:30:03.412966",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.7/site-packages/transformers/convert_slow_tokenizer.py:447: UserWarning: The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option which is not implemented in the fast tokenizers. In practice this means that the fast version of the tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these unknown tokens into a sequence of byte tokens matching the original piece of text.\n",
      "  \"The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option\"\n",
      "You are using a model of type mt5 to instantiate a model of type t5. This is not supported for all configurations of models and can yield errors.\n",
      "Downloading pytorch_model.bin: 100%|██████████| 1.20G/1.20G [00:16<00:00, 72.6MB/s]\n",
      "Downloading (…)neration_config.json: 100%|██████████| 147/147 [00:00<00:00, 31.2kB/s]\n"
     ]
    }
   ],
   "source": [
    "CKPT = valohai.parameters(\"model\").value\n",
    "from transformers import AutoTokenizer, T5ForConditionalGeneration\n",
    "tokenizer = AutoTokenizer.from_pretrained(CKPT)\n",
    "model = T5ForConditionalGeneration.from_pretrained(CKPT).to(torch_device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "6e2c9c3b-dfd1-4a34-ad77-3c8f69ac4854",
   "metadata": {
    "papermill": {
     "duration": 2.058386,
     "end_time": "2023-02-01T13:30:21.722091",
     "exception": false,
     "start_time": "2023-02-01T13:30:19.663705",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "                                                                                "
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Input Mean: 47.4798, %-Input > 256:0.0,  %-Input > 128:0.001, %-Input > 64:0.0684 Output Mean:19.4288, %-Output > 256:0.0, %-Output > 128:0.0002, %-Output > 64:0.0004\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\r"
     ]
    }
   ],
   "source": [
    "# map article and summary len to dict as well as if sample is longer than 512 tokens\n",
    "def map_to_length(x):\n",
    "  x[\"input_len\"] = len(tokenizer(x[\"input\"]).input_ids)\n",
    "  x[\"input_longer_256\"] = int(x[\"input_len\"] > 256)\n",
    "  x[\"input_longer_128\"] = int(x[\"input_len\"] > 128)\n",
    "  x[\"input_longer_64\"] = int(x[\"input_len\"] > 64)\n",
    "  x[\"out_len\"] = len(tokenizer(x[\"target\"]).input_ids)\n",
    "  x[\"out_longer_256\"] = int(x[\"out_len\"] > 256)\n",
    "  x[\"out_longer_128\"] = int(x[\"out_len\"] > 128)\n",
    "  x[\"out_longer_64\"] = int(x[\"out_len\"] > 64)\n",
    "  return x\n",
    "\n",
    "sample_size = 10000\n",
    "data_stats = train_data.select(range(sample_size)).map(map_to_length, num_proc=4)\n",
    "\n",
    "def compute_and_print_stats(x):\n",
    "  if len(x[\"input_len\"]) == sample_size:\n",
    "    print(\n",
    "        \"Input Mean: {}, %-Input > 256:{},  %-Input > 128:{}, %-Input > 64:{} Output Mean:{}, %-Output > 256:{}, %-Output > 128:{}, %-Output > 64:{}\".format(\n",
    "            sum(x[\"input_len\"]) / sample_size,\n",
    "            sum(x[\"input_longer_256\"]) / sample_size,\n",
    "            sum(x[\"input_longer_128\"]) / sample_size,\n",
    "            sum(x[\"input_longer_64\"]) / sample_size,   \n",
    "            sum(x[\"out_len\"]) / sample_size,\n",
    "            sum(x[\"out_longer_256\"]) / sample_size,\n",
    "            sum(x[\"out_longer_128\"]) / sample_size,\n",
    "            sum(x[\"out_longer_64\"]) / sample_size,\n",
    "        )\n",
    "    )\n",
    "\n",
    "output = data_stats.map(\n",
    "  compute_and_print_stats, \n",
    "  batched=True,\n",
    "  batch_size=-1,\n",
    ")    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "d6b69f36-bd57-46e4-b77e-a0017ffbf64e",
   "metadata": {
    "papermill": {
     "duration": 0.063495,
     "end_time": "2023-02-01T13:30:21.834853",
     "exception": false,
     "start_time": "2023-02-01T13:30:21.771358",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# tokenize the examples\n",
    "def convert_to_features(example_batch):\n",
    "    input_encodings = tokenizer.batch_encode_plus(example_batch['input'], pad_to_max_length=True, max_length=100, truncation=True)\n",
    "    target_encodings = tokenizer.batch_encode_plus(example_batch['target'], pad_to_max_length=True, max_length=100, truncation=True)\n",
    "\n",
    "    encodings = {\n",
    "        'input_ids': input_encodings['input_ids'], \n",
    "        'attention_mask': input_encodings['attention_mask'],\n",
    "        'labels': target_encodings['input_ids'],\n",
    "        'decoder_attention_mask': target_encodings['attention_mask']\n",
    "    }\n",
    "\n",
    "    return encodings "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "67b3b61d-e1ae-435e-8f55-46fa219ea3e2",
   "metadata": {
    "papermill": {
     "duration": 23.172287,
     "end_time": "2023-02-01T13:30:45.056685",
     "exception": false,
     "start_time": "2023-02-01T13:30:21.884398",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Map:   0%|          | 0/64776 [00:00<?, ? examples/s]/opt/conda/lib/python3.7/site-packages/transformers/tokenization_utils_base.py:2352: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert).\n",
      "  FutureWarning,\n",
      "                                                                   \r"
     ]
    }
   ],
   "source": [
    "train_data = train_data.map(convert_to_features, batched=True, remove_columns=train_data.column_names)\n",
    "test_data = test_data.map(convert_to_features, batched=True, remove_columns=test_data.column_names)\n",
    "\n",
    "columns = ['input_ids', 'attention_mask', 'labels', 'decoder_attention_mask']\n",
    "\n",
    "train_data.set_format(type='torch', columns=columns)\n",
    "test_data.set_format(type='torch', columns=columns)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "69d37693-8c5a-45c2-a9fd-dfab43ed71fa",
   "metadata": {
    "papermill": {
     "duration": 0.106751,
     "end_time": "2023-02-01T13:30:45.221681",
     "exception": false,
     "start_time": "2023-02-01T13:30:45.114930",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "from transformers import Seq2SeqTrainer\n",
    "from transformers import Seq2SeqTrainingArguments"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "644e81ec-1c23-4a2d-a488-f9354c237815",
   "metadata": {
    "papermill": {
     "duration": 0.069207,
     "end_time": "2023-02-01T13:30:45.347009",
     "exception": false,
     "start_time": "2023-02-01T13:30:45.277802",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# set training arguments - Feel free to adapt it\n",
    "training_args = Seq2SeqTrainingArguments(\n",
    "    output_dir=output_path,\n",
    "    per_device_train_batch_size=16,\n",
    "    num_train_epochs=valohai.parameters(\"epochs\").value,\n",
    "    per_device_eval_batch_size=16,\n",
    "    predict_with_generate=True,\n",
    "    evaluation_strategy=\"epoch\",\n",
    "    do_train=True,\n",
    "    do_eval=True,\n",
    "    logging_steps=500,\n",
    "    save_strategy=\"epoch\",\n",
    "    #save_steps=1000,\n",
    "    #eval_steps=1000,\n",
    "    overwrite_output_dir=True,\n",
    "    save_total_limit=1,\n",
    "    load_best_model_at_end=True,\n",
    "    push_to_hub=False\n",
    "    #fp16=True, \n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "46d2344c-df83-4495-b700-71e1308f60f1",
   "metadata": {
    "papermill": {
     "duration": 4.757895,
     "end_time": "2023-02-01T13:30:50.160794",
     "exception": false,
     "start_time": "2023-02-01T13:30:45.402899",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "! pip install -q rouge_score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "63ca930c-9cd3-4880-beb6-dd44057069bb",
   "metadata": {
    "papermill": {
     "duration": 1.098239,
     "end_time": "2023-02-01T13:30:51.318015",
     "exception": false,
     "start_time": "2023-02-01T13:30:50.219776",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:2: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
      "  \n"
     ]
    }
   ],
   "source": [
    "from datasets import load_metric\n",
    "rouge = load_metric(\"rouge\")\n",
    "\n",
    "def compute_metrics(pred):\n",
    "    labels_ids = pred.label_ids\n",
    "    pred_ids = pred.predictions\n",
    "\n",
    "    # all unnecessary tokens are removed\n",
    "    pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
    "    labels_ids[labels_ids == -100] = tokenizer.pad_token_id\n",
    "    label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)\n",
    "\n",
    "    rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=[\"rouge2\"])[\"rouge2\"].mid\n",
    "\n",
    "    return {\n",
    "        \"rouge2_precision\": round(rouge_output.precision, 4),\n",
    "        \"rouge2_recall\": round(rouge_output.recall, 4),\n",
    "        \"rouge2_fmeasure\": round(rouge_output.fmeasure, 4),\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "2977e566-8714-4164-b7ad-2706dbd26be8",
   "metadata": {
    "papermill": {
     "duration": 0.074325,
     "end_time": "2023-02-01T13:30:51.451387",
     "exception": false,
     "start_time": "2023-02-01T13:30:51.377062",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "# instantiate trainer\n",
    "trainer = Seq2SeqTrainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    compute_metrics=compute_metrics,\n",
    "    train_dataset=train_data,\n",
    "    eval_dataset=test_data,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "8dce01a3-61b2-4cb4-b5d2-319d0e946083",
   "metadata": {
    "papermill": {
     "duration": 227.616733,
     "end_time": "2023-02-01T13:34:39.125675",
     "exception": false,
     "start_time": "2023-02-01T13:30:51.508942",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='1986' max='993' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [993/993 14:21]\n",
       "    </div>\n",
       "    "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "{'eval_loss': 42.09397506713867,\n",
       " 'eval_rouge2_precision': 0.002,\n",
       " 'eval_rouge2_recall': 0.0009,\n",
       " 'eval_rouge2_fmeasure': 0.0012,\n",
       " 'eval_runtime': 77.1,\n",
       " 'eval_samples_per_second': 205.94,\n",
       " 'eval_steps_per_second': 12.879}"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.evaluate()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "55e1a216-8034-49ef-aea4-5fee281d07f3",
   "metadata": {
    "papermill": {
     "duration": 6776.251162,
     "end_time": "2023-02-01T15:27:35.554942",
     "exception": false,
     "start_time": "2023-02-01T13:34:39.303780",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.7/site-packages/transformers/optimization.py:395: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
      "  FutureWarning,\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='40490' max='40490' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [40490/40490 2:12:07, Epoch 10/10]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "      <th>Rouge2 Precision</th>\n",
       "      <th>Rouge2 Recall</th>\n",
       "      <th>Rouge2 Fmeasure</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>1</td>\n",
       "      <td>0.103200</td>\n",
       "      <td>0.051379</td>\n",
       "      <td>0.901000</td>\n",
       "      <td>0.817300</td>\n",
       "      <td>0.849700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2</td>\n",
       "      <td>0.065800</td>\n",
       "      <td>0.038024</td>\n",
       "      <td>0.917400</td>\n",
       "      <td>0.838200</td>\n",
       "      <td>0.869300</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3</td>\n",
       "      <td>0.054700</td>\n",
       "      <td>0.033012</td>\n",
       "      <td>0.923000</td>\n",
       "      <td>0.844100</td>\n",
       "      <td>0.875000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4</td>\n",
       "      <td>0.045900</td>\n",
       "      <td>0.030169</td>\n",
       "      <td>0.928600</td>\n",
       "      <td>0.847300</td>\n",
       "      <td>0.880000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>5</td>\n",
       "      <td>0.040100</td>\n",
       "      <td>0.028730</td>\n",
       "      <td>0.930800</td>\n",
       "      <td>0.849800</td>\n",
       "      <td>0.882400</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>6</td>\n",
       "      <td>0.039300</td>\n",
       "      <td>0.027651</td>\n",
       "      <td>0.931800</td>\n",
       "      <td>0.850700</td>\n",
       "      <td>0.883300</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>7</td>\n",
       "      <td>0.036000</td>\n",
       "      <td>0.027332</td>\n",
       "      <td>0.932900</td>\n",
       "      <td>0.852000</td>\n",
       "      <td>0.884600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>8</td>\n",
       "      <td>0.033500</td>\n",
       "      <td>0.026453</td>\n",
       "      <td>0.933100</td>\n",
       "      <td>0.852300</td>\n",
       "      <td>0.884900</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>9</td>\n",
       "      <td>0.032800</td>\n",
       "      <td>0.026168</td>\n",
       "      <td>0.934200</td>\n",
       "      <td>0.853100</td>\n",
       "      <td>0.885800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>10</td>\n",
       "      <td>0.032300</td>\n",
       "      <td>0.026122</td>\n",
       "      <td>0.934300</td>\n",
       "      <td>0.853100</td>\n",
       "      <td>0.885900</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "TrainOutput(global_step=40490, training_loss=0.2895770631857524, metrics={'train_runtime': 7927.7437, 'train_samples_per_second': 81.708, 'train_steps_per_second': 5.107, 'total_flos': 6.689509761024e+16, 'train_loss': 0.2895770631857524, 'epoch': 10.0})"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "0bd48e53-90c3-483f-b17d-ac996f801977",
   "metadata": {
    "papermill": {
     "duration": 1.119331,
     "end_time": "2023-02-01T15:27:37.410693",
     "exception": false,
     "start_time": "2023-02-01T15:27:36.291362",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('/valohai/outputs/model/tokenizer_config.json',\n",
       " '/valohai/outputs/model/special_tokens_map.json',\n",
       " '/valohai/outputs/model/spiece.model',\n",
       " '/valohai/outputs/model/added_tokens.json',\n",
       " '/valohai/outputs/model/tokenizer.json')"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.save_model(output_path)\n",
    "tokenizer.save_pretrained(output_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "38dbdcd0-14b3-4270-8ad8-03059b6d63de",
   "metadata": {
    "papermill": {
     "duration": 1.717893,
     "end_time": "2023-02-01T15:27:39.866396",
     "exception": false,
     "start_time": "2023-02-01T15:27:38.148503",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "CKPT = output_path\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(CKPT, local_files_only=True)\n",
    "model = T5ForConditionalGeneration.from_pretrained(CKPT, local_files_only=True).to(torch_device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "90587462-5328-4f32-bad9-4fbfb00d7bb7",
   "metadata": {
    "papermill": {
     "duration": 18.569639,
     "end_time": "2023-02-01T15:27:59.089768",
     "exception": false,
     "start_time": "2023-02-01T15:27:40.520129",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: sentencepiece in /opt/conda/lib/python3.7/site-packages (0.1.97)\n",
      "Collecting pandasql\n",
      "  Downloading pandasql-0.7.3.tar.gz (26 kB)\n",
      "Requirement already satisfied: numpy in /opt/conda/lib/python3.7/site-packages (from pandasql) (1.21.2)\n",
      "Requirement already satisfied: pandas in /opt/conda/lib/python3.7/site-packages (from pandasql) (1.3.5)\n",
      "Collecting sqlalchemy\n",
      "  Downloading SQLAlchemy-2.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB)\n",
      "\u001b[K     |████████████████████████████████| 2.7 MB 6.9 MB/s eta 0:00:01\n",
      "\u001b[?25hRequirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.7/site-packages (from pandas->pandasql) (2.8.2)\n",
      "Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.7/site-packages (from pandas->pandasql) (2021.3)\n",
      "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas->pandasql) (1.16.0)\n",
      "Requirement already satisfied: typing-extensions>=4.2.0 in /opt/conda/lib/python3.7/site-packages (from sqlalchemy->pandasql) (4.5.0)\n",
      "Collecting greenlet!=0.4.17\n",
      "  Downloading greenlet-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (566 kB)\n",
      "\u001b[K     |████████████████████████████████| 566 kB 111.8 MB/s eta 0:00:01\n",
      "\u001b[?25hRequirement already satisfied: importlib-metadata in /opt/conda/lib/python3.7/site-packages (from sqlalchemy->pandasql) (6.1.0)\n",
      "Requirement already satisfied: zipp>=0.5 in /opt/conda/lib/python3.7/site-packages (from importlib-metadata->sqlalchemy->pandasql) (3.15.0)\n",
      "Building wheels for collected packages: pandasql\n",
      "  Building wheel for pandasql (setup.py) ... \u001b[?25ldone\n",
      "\u001b[?25h  Created wheel for pandasql: filename=pandasql-0.7.3-py3-none-any.whl size=26782 sha256=110b83989487b7b983fb80e3ede92a519027d1ddfd6988e2012175878ee93522\n",
      "  Stored in directory: /root/.cache/pip/wheels/5c/4b/ec/41f4e116c8053c3654e2c2a47c62b4fca34cc67ef7b55deb7f\n",
      "Successfully built pandasql\n",
      "Installing collected packages: greenlet, sqlalchemy, pandasql\n",
      "Successfully installed greenlet-2.0.2 pandasql-0.7.3 sqlalchemy-2.0.7\n",
      "Collecting python-Levenshtein\n",
      "  Downloading python_Levenshtein-0.20.9-py3-none-any.whl (9.4 kB)\n",
      "Collecting Levenshtein==0.20.9\n",
      "  Downloading Levenshtein-0.20.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175 kB)\n",
      "\u001b[K     |████████████████████████████████| 175 kB 4.3 MB/s eta 0:00:01\n",
      "\u001b[?25hCollecting rapidfuzz<3.0.0,>=2.3.0\n",
      "  Downloading rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB)\n",
      "\u001b[K     |████████████████████████████████| 2.2 MB 59.5 MB/s eta 0:00:01\n",
      "\u001b[?25hInstalling collected packages: rapidfuzz, Levenshtein, python-Levenshtein\n",
      "Successfully installed Levenshtein-0.20.9 python-Levenshtein-0.20.9 rapidfuzz-2.13.7\n",
      "Collecting sacremoses\n",
      "  Downloading sacremoses-0.0.53.tar.gz (880 kB)\n",
      "\u001b[K     |████████████████████████████████| 880 kB 4.3 MB/s eta 0:00:01\n",
      "\u001b[?25hRequirement already satisfied: regex in /opt/conda/lib/python3.7/site-packages (from sacremoses) (2022.10.31)\n",
      "Requirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from sacremoses) (1.16.0)\n",
      "Requirement already satisfied: click in /opt/conda/lib/python3.7/site-packages (from sacremoses) (8.1.3)\n",
      "Requirement already satisfied: joblib in /opt/conda/lib/python3.7/site-packages (from sacremoses) (1.2.0)\n",
      "Requirement already satisfied: tqdm in /opt/conda/lib/python3.7/site-packages (from sacremoses) (4.65.0)\n",
      "Requirement already satisfied: importlib-metadata in /opt/conda/lib/python3.7/site-packages (from click->sacremoses) (6.1.0)\n",
      "Requirement already satisfied: typing-extensions>=3.6.4 in /opt/conda/lib/python3.7/site-packages (from importlib-metadata->click->sacremoses) (4.5.0)\n",
      "Requirement already satisfied: zipp>=0.5 in /opt/conda/lib/python3.7/site-packages (from importlib-metadata->click->sacremoses) (3.15.0)\n",
      "Building wheels for collected packages: sacremoses\n",
      "  Building wheel for sacremoses (setup.py) ... \u001b[?25ldone\n",
      "\u001b[?25h  Created wheel for sacremoses: filename=sacremoses-0.0.53-py3-none-any.whl size=895259 sha256=0f511e2624db29b2126dc7c3aec8ba54e44a1d89fa58a852332349de3af597b3\n",
      "  Stored in directory: /root/.cache/pip/wheels/87/39/dd/a83eeef36d0bf98e7a4d1933a4ad2d660295a40613079bafc9\n",
      "Successfully built sacremoses\n",
      "Installing collected packages: sacremoses\n",
      "Successfully installed sacremoses-0.0.53\n"
     ]
    }
   ],
   "source": [
    "!pip install sentencepiece\n",
    "!pip install pandasql\n",
    "!pip install python-Levenshtein\n",
    "!pip install sacremoses"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "403dc883-13b6-4661-bb8c-678ec22840ab",
   "metadata": {
    "papermill": {
     "duration": 0.819632,
     "end_time": "2023-02-01T15:28:00.631919",
     "exception": false,
     "start_time": "2023-02-01T15:27:59.812287",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "import Levenshtein\n",
    "import re\n",
    "from collections import Counter\n",
    "\n",
    "#Get columns in query\n",
    "def get_columns_name_in_query(query):\n",
    "  cols_from_select = get_cols_name_for_select(query) \n",
    "  cols_from_where = get_cols_name_for_where(query)\n",
    "  return list(set(cols_from_select + cols_from_where))\n",
    "\n",
    "#Translate query in natural language from italian to english (input: string; output: string)\n",
    "def translate2en(query):\n",
    "  translated = model_t.generate(**tokenizer_t(query, return_tensors=\"pt\", padding=True))\n",
    "  query = [tokenizer_t.decode(t, skip_special_tokens=True) for t in translated]\n",
    "  return query\n",
    "\n",
    "# Sometime column name maybe ill-defined. This function replace weird chars with underscore (input:list; output:string)\n",
    "def replace_nonalphanumeric_chars_with_us(l):\n",
    "  well_defined = [re.sub('[^0-9a-zA-Z]+', '_', s) for s in l]\n",
    "  return well_defined\n",
    "\n",
    "# Adjust column name using columns name from original table (input: column name in SQL query (string), \n",
    "#list of columns names from table (string); output: corrected column name (if needed) (string))\n",
    "def adjust_col_name(col_name, columns_available): \n",
    "  columns_available = [x.upper() for x in columns_available]\n",
    "  if col_name.upper() in set(columns_available):\n",
    "    return col_name\n",
    "  else:\n",
    "    max = -100\n",
    "    most_similar_column = 'column123456789011'\n",
    "    for col in columns_available:      \n",
    "      score = -Levenshtein.distance(col_name, col)               \n",
    "      if score > max:\n",
    "        most_similar_column = col  \n",
    "        max = score           \n",
    "    return most_similar_column\n",
    "\n",
    "def min_positive(a,b):\n",
    "  if (b < a) and (b > 0): return b\n",
    "  else: return a\n",
    "\n",
    "#Return corrected syntax for aggregator operators (input: string; output: string)\n",
    "#USE only for wikisql dataset\n",
    "def aggregator_parser(query): \n",
    "  query = query.upper() \n",
    "  if query.find('SELECT MAX') > -1:\n",
    "    end = min_positive(query.find('FROM'), query.find(','))    \n",
    "    adjusted_query = query.replace(query[10:end],'(' + query[11:end-1] + ') ')\n",
    "    return adjusted_query\n",
    "  elif query.find('SELECT COUNT') > -1:\n",
    "    end = min_positive(query.find('FROM'), query.find(','))\n",
    "    adjusted_query = query.replace(query[12:end],'(' + query[13:end-1] + ') ')\n",
    "    return adjusted_query\n",
    "  elif query.find('SELECT MIN') > -1:\n",
    "    end = min_positive(query.find('FROM'), query.find(','))\n",
    "    adjusted_query = query.replace(query[10:end],'(' + query[11:end-1] + ') ')\n",
    "    return adjusted_query\n",
    "  #elif query.find('SELECT DISTINCT') > -1:\n",
    "   #end = query.find('FROM')\n",
    "    #adjusted_query = query.replace(query[15:end],'(' + query[16:end-1] + ') ')\n",
    "    #return adjusted_query\n",
    "  else: \n",
    "    return query\n",
    "\n",
    "#Return columns name from SELECT operator (input: string; output: list)\n",
    "def get_cols_name_for_select(query):\n",
    "  query = query.upper()  \n",
    "  if query.find('SELECT DISTINCT') > -1:\n",
    "    end = query.find('FROM')\n",
    "    cols = query[15:end-1].split(',')\n",
    "  elif query.find('SELECT MAX') > -1:\n",
    "    end = query.find('FROM')\n",
    "    cols = query[10:end-1].split(',')  \n",
    "  elif query.find('SELECT MIN') > -1:\n",
    "    end = query.find('FROM')\n",
    "    cols = query[10:end-1].split(',')     \n",
    "  elif query.find('SELECT COUNT') > -1:\n",
    "    end = query.find('FROM')\n",
    "    cols = query[13:end-1].split(',')    \n",
    "  elif query.find('SELECT') > -1:\n",
    "    end = query.find('FROM')\n",
    "    cols = query[7:end-1].split(',')    \n",
    "  else:  \n",
    "    cols = ['']    \n",
    "  return [x.replace(' ','').replace(')','').replace('(','').upper() for x in cols]\n",
    "\n",
    "def get_indexes(l):\n",
    "  ops = []\n",
    "  idx = []\n",
    "  for i in range(len(l)):\n",
    "    if l[i] in ['=', '>', '<', '>=', '<=', '<>', 'LIKE', 'AND', 'OR']:\n",
    "      idx.append(i)\n",
    "  return idx\n",
    "\n",
    "def add_spaces_cmp_operators(string):\n",
    "  ops = ['=', '>', '<', '>=', '<=', '<>']\n",
    "  for op in ops:\n",
    "    string = string.replace(op, ' ' + op + ' ') \n",
    "  return ' '.join(string.split())\n",
    "\n",
    "#Check if string and add quotes (input: string; output: string)\n",
    "#USE only for wikisql dataset\n",
    "def add_quotes_to_string(query):\n",
    "  query = query.upper()\n",
    "  if query.find('WHERE') > 0:\n",
    "    query_list = query.split(' ')\n",
    "    query_list = [x.replace(' ','') for x in query_list]\n",
    "    query_list[:] = filter(None, query_list)  \n",
    "    idx_list = get_indexes(query_list)  \n",
    "    idx_list.append(len(query_list))  \n",
    "    subs = []\n",
    "    for i in range(len(idx_list)):\n",
    "      if i % 2 == 0:\n",
    "        b = idx_list[i] + 1\n",
    "        e = idx_list[i+1] - 1\n",
    "        if b != e:\n",
    "          s = ''\n",
    "          for ix in range(b,e + 1):          \n",
    "            s = s + query_list[ix] + ' ' \n",
    "          s = s[:-1]   \n",
    "        else:\n",
    "          s = query_list[b]     \n",
    "        if not(s.isnumeric()):\n",
    "          s = \"'\" + s + \"'\"\n",
    "        subs.append((idx_list[i] + 1, idx_list[i+1] - 1, s))  \n",
    "    subs = subs[::-1]       \n",
    "    for i in range(len(subs)):\n",
    "      e = subs[i]\n",
    "      if e[0] == e[1]:\n",
    "        query_list[e[0]] = e[2]\n",
    "      else:\n",
    "        query_list[e[0]] = e[2]\n",
    "        idx = e[1]\n",
    "        while idx > e[0]:\n",
    "          query_list.pop(idx)\n",
    "          idx = idx - 1\n",
    "    final_query = ''\n",
    "    for word in query_list:\n",
    "      final_query = final_query + word + ' '     \n",
    "    return final_query[:-1]\n",
    "  else:\n",
    "    return query\n",
    "\n",
    "#Get values from where clause (input: string; output: list)\n",
    "def get_values_for_query_filter(query):\n",
    "  query = query.upper()\n",
    "  if query.find('WHERE') > 0:\n",
    "    query_list = query.split(' ')\n",
    "    query_list = [x.replace(' ','') for x in query_list]\n",
    "    query_list[:] = filter(None, query_list)  \n",
    "    idx_list = get_indexes(query_list)  \n",
    "    idx_list.append(len(query_list))  \n",
    "    subs = []\n",
    "    for i in range(len(idx_list)):\n",
    "      if i % 2 == 0:\n",
    "        b = idx_list[i] + 1\n",
    "        e = idx_list[i+1] - 1\n",
    "        if b != e:\n",
    "          s = ''\n",
    "          for ix in range(b,e + 1):          \n",
    "            s = s + query_list[ix] + ' ' \n",
    "          s = s[:-1]   \n",
    "        else:\n",
    "          s = query_list[b]        \n",
    "        subs.append(s.replace(\"'\",\"\"))\n",
    "  return subs\n",
    "\n",
    "\n",
    "# Get columns name after where (input: string, output: list)\n",
    "def get_cols_name_for_where(query):\n",
    "  query = query.upper()\n",
    "  subs = []  \n",
    "  if query.find('WHERE') > 0:\n",
    "    query_list = query.split(' ')\n",
    "    query_list = [x.replace(' ','') for x in query_list]\n",
    "    query_list[:] = filter(None, query_list)  \n",
    "    idx_list = get_indexes(query_list)  \n",
    "    #idx_list.append(len(query_list))\n",
    "    idx_list.insert(0, query_list.index('WHERE'))      \n",
    "    for i in range(len(idx_list)-1):\n",
    "      if i % 2 == 0:     \n",
    "        b = idx_list[i] + 1\n",
    "        e = idx_list[i+1] - 1\n",
    "        if b != e:\n",
    "          s = ''\n",
    "          for ix in range(b,e + 1):          \n",
    "            s = s + query_list[ix] + ' ' \n",
    "          s = s[:-1]   \n",
    "        else:\n",
    "          s = query_list[b]\n",
    "        subs.append(s)    \n",
    "  return subs   \n",
    "\n",
    "def check_if_number(s):\n",
    "  try:\n",
    "    a = float(s)\n",
    "    return True\n",
    "  except:\n",
    "    return False\n",
    "\n",
    "#Correct missing compare operator (input: string; output: string)\n",
    "#T5 seems to have problem with '<' operator so if there is none this is used.\n",
    "def check_if_correct_cmp_operators(query):\n",
    "  query = query.upper()\n",
    "  if query.find('WHERE') > 0:\n",
    "    query = add_spaces_cmp_operators(query)\n",
    "    query_list = query.split(' ')\n",
    "    w = query_list.index('WHERE')\n",
    "    cmp_operators = ['=', '>', '<', '>=', '<=', '<>', 'LIKE']\n",
    "    s = 0\n",
    "    for op in cmp_operators:\n",
    "      s = s + query_list.count(op)\n",
    "    if s == 0:      \n",
    "      if check_if_number(query_list[-1]):\n",
    "        query_list.insert(len(query_list)-1,'<')\n",
    "      else:\n",
    "        query_list.insert(len(query_list)-1,'=')\n",
    "      return ' '.join(query_list)\n",
    "    else:\n",
    "      return query\n",
    "  else: return query\n",
    "    \n",
    "\n",
    "\n",
    "#Correct SQL syntax using info from table (input: string, list; ouput:string)\n",
    "#Use only for wikisql dataset\n",
    "def correct_query(query, table_columns):  \n",
    "    query = check_if_correct_cmp_operators(query)\n",
    "    query = add_spaces_cmp_operators(query)    \n",
    "  #try: \n",
    "    query = aggregator_parser(query) \n",
    "  #except: pass \n",
    "  #try: \n",
    "    query = add_quotes_to_string(query) \n",
    "  #except: pass \n",
    "  #try:\n",
    "    cols_name = get_columns_name_in_query(query)      \n",
    "    for col in cols_name:    \n",
    "      corrected_col = adjust_col_name(col, table_columns)      \n",
    "      query = query.replace(col, corrected_col)\n",
    "  #except: pass\n",
    "    return query\n",
    "\n",
    "def correct_mispelling(question, query):  \n",
    "  query = query.upper()\n",
    "  if query.find('WHERE') > 0:\n",
    "    question = question.upper()\n",
    "    corrections = []\n",
    "    values = get_values_for_query_filter(query)\n",
    "    for value in values:    \n",
    "      l = len(value.split(' '))\n",
    "      tokens = question.replace('  ', ' ').split(' ')\n",
    "      l_gram = ''\n",
    "      max = -100\n",
    "      for i in range(0, len(tokens)-l+1, 1):\n",
    "        filter = ' '.join(tokens[i:i+l]).strip('.,?')\n",
    "        #filter = re.sub(r\"[,.;@#?!&$]+\\ *\", \" \", filter).strip()    \n",
    "        score = -Levenshtein.distance(value, filter)        \n",
    "        if score > max:\n",
    "          max = score\n",
    "          correct_filter = filter        \n",
    "      corrections.append([value, correct_filter])    \n",
    "    for corr in corrections:\n",
    "      query = query.replace(corr[0], corr[1])\n",
    "  return query"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "4683a145-3f8c-4e0e-a7e1-e8b8573ecc35",
   "metadata": {
    "papermill": {
     "duration": 0.740263,
     "end_time": "2023-02-01T15:28:02.036850",
     "exception": false,
     "start_time": "2023-02-01T15:28:01.296587",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "def translate_to_sql(text):\n",
    "    inputs = tokenizer(text, padding='longest', max_length=64, return_tensors='pt').to(torch_device)\n",
    "    input_ids = inputs.input_ids\n",
    "    attention_mask = inputs.attention_mask\n",
    "    output = model.generate(input_ids, attention_mask=attention_mask, max_length=64)\n",
    "\n",
    "    return tokenizer.decode(output[0], skip_special_tokens=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0be55a1e-2ad4-4a4b-9beb-57623059c768",
   "metadata": {
    "papermill": {
     "duration": 1669.9823,
     "end_time": "2023-02-01T15:55:52.681707",
     "exception": false,
     "start_time": "2023-02-01T15:28:02.699407",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:datasets.builder:Found cached dataset wikisql (/root/.cache/huggingface/datasets/wikisql/default/0.1.0/7037bfe6a42b1ca2b6ac3ccacba5253b1825d31379e9cc626fc79a620977252d)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "15878\n",
      "0.0 0.01 %\n",
      "0.6595744680851063 0.51 %\n",
      "0.7263157894736842 1.01 %\n",
      "0.6928571428571428 1.51 %\n",
      "0.6878306878306878 2.01 %\n",
      "0.7058823529411765 2.51 %\n",
      "0.7142857142857143 3.01 %\n",
      "0.6795252225519288 3.51 %\n",
      "0.6909090909090909 4.01 %\n",
      "0.7020785219399538 4.51 %\n",
      "0.7 5.01 %\n",
      "0.7 5.51 %\n",
      "0.6972318339100346 6.01 %\n",
      "0.6990445859872612 6.51 %\n",
      "0.7071005917159763 7.01 %\n",
      "0.7158620689655173 7.51 %\n",
      "0.7174193548387097 8.01 %\n",
      "0.7127272727272728 8.51 %\n",
      "0.7177142857142857 9.01 %\n",
      "0.7096424702058505 9.51 %\n",
      "0.7057613168724279 10.01 %\n",
      "0.7045009784735812 10.51 %\n",
      "0.7052238805970149 11.01 %\n",
      "0.6978609625668449 11.51 %\n",
      "0.7028181041844578 12.01 %\n",
      "0.7 12.51 %\n",
      "0.7021276595744681 13.01 %\n",
      "0.7025796661608498 13.51 %\n",
      "0.706140350877193 14.01 %\n",
      "0.7080394922425952 14.51 %\n",
      "0.7100954979536153 15.01 %\n",
      "0.7058047493403694 15.51 %\n",
      "0.7049808429118773 16.01 %\n",
      "0.7054455445544554 16.51 %\n",
      "0.7063063063063063 17.01 %\n",
      "0.7046117921774664 17.51 %\n",
      "0.7060830017055145 18.01 %\n",
      "0.7037037037037037 18.51 %\n",
      "0.7002152852529602 19.01 %\n",
      "0.7017819706498952 19.51 %\n",
      "0.7017364657814096 20.01 %\n",
      "0.7016932270916335 20.51 %\n",
      "0.6987366375121478 21.01 %\n",
      "0.7009034712315739 21.51 %\n",
      "0.7007910656119125 22.01 %\n",
      "0.6995903504779244 22.51 %\n",
      "0.6994657168299199 23.01 %\n",
      "0.6980392156862745 23.51 %\n",
      "0.6961538461538461 24.01 %\n",
      "0.6961071578066137 24.51 %\n",
      "0.6978269782697827 25.01 %\n",
      "0.6994777018883086 25.51 %\n",
      "0.6992510839574301 26.01 %\n",
      "0.699265558562041 26.51 %\n",
      "0.6994307400379507 27.01 %\n",
      "0.6994413407821229 27.51 %\n",
      "0.6998171846435101 28.01 %\n",
      "0.7023339317773788 28.51 %\n",
      "0.702893436838391 29.01 %\n",
      "0.7018763029881863 29.51 %\n",
      "0.7004781420765027 30.01 %\n",
      "0.7021490933512424 30.51 %\n",
      "0.7007926023778072 31.01 %\n",
      "0.701885565669701 31.51 %\n",
      "0.7037747920665387 32.01 %\n",
      "0.7034005037783375 32.51 %\n",
      "0.703657780533168 33.01 %\n",
      "0.7042124542124543 33.51 %\n",
      "0.7037593984962406 34.01 %\n",
      "0.7045925925925925 34.51 %\n",
      "0.7033576642335766 35.01 %\n",
      "0.7020725388601037 35.51 %\n",
      "0.7021881216254617 36.01 %\n",
      "0.7045135968601065 36.51 %\n",
      "0.703816371681416 37.01 %\n",
      "0.7054009819967266 37.51 %\n",
      "0.7053283100107642 38.01 %\n",
      "0.7063197026022305 38.51 %\n",
      "0.7072851153039832 39.01 %\n",
      "0.707815734989648 39.51 %\n",
      "0.7072049054675523 40.01 %\n",
      "0.7080494574817058 40.51 %\n",
      "0.706556968337073 41.01 %\n",
      "0.7067224821472544 41.51 %\n",
      "0.7041135434207361 42.51 %\n",
      "0.7061340941512125 43.01 %\n",
      "0.7056195626616506 43.51 %\n",
      "0.7048570764582849 44.01 %\n",
      "0.70434183321847 44.51 %\n",
      "0.7051340299863699 45.01 %\n",
      "0.7056179775280899 45.51 %\n",
      "0.7052678372971771 46.01 %\n",
      "0.7047702791822379 46.51 %\n",
      "0.7036312241791693 47.01 %\n",
      "0.703807270380727 47.51 %\n",
      "0.704405192594169 48.01 %\n",
      "0.7039376710886502 48.51 %\n",
      "0.7032715148989372 49.01 %\n",
      "0.7025577557755776 49.51 %\n",
      "0.7021233156390363 50.01 %\n",
      "0.7030523549626035 50.51 %\n",
      "0.7028216930158094 51.01 %\n",
      "0.7049147839873167 51.51 %\n",
      "0.7049469964664311 52.01 %\n",
      "0.7056765163297045 52.51 %\n",
      "0.7060069310743166 53.01 %\n",
      "0.7065673921344024 53.51 %\n",
      "0.7078290468986385 54.01 %\n",
      "0.7077557137504683 54.51 %\n",
      "0.707629478373863 55.01 %\n",
      "0.709475620975161 55.51 %\n",
      "0.7108477666362808 56.01 %\n",
      "0.7125813449023861 56.51 %\n",
      "0.7136200716845879 57.01 %\n",
      "0.7140319715808171 57.51 %\n",
      "0.7151408450704225 58.01 %\n",
      "0.715782122905028 58.51 %\n",
      "0.7158186223606784 59.01 %\n",
      "0.7163289630512515 60.01 %\n",
      "0.7156366092536305 60.51 %\n",
      "0.7153382451440053 61.01 %\n",
      "0.7152108933909 61.51 %\n",
      "0.7151565074135091 62.01 %\n",
      "0.7163398692810458 62.51 %\n",
      "0.7165316045380875 63.01 %\n",
      "0.7157099212091976 63.51 %\n",
      "0.7162226830435476 64.01 %\n",
      "0.7173603418262383 64.51 %\n",
      "0.7172240540116188 65.01 %\n",
      "0.7178927680798005 65.51 %\n",
      "0.7174013921113689 66.01 %\n",
      "0.7172678434382195 66.51 %\n",
      "0.7177456207159177 67.01 %\n",
      "0.7183673469387755 67.51 %\n",
      "0.7195798949737434 68.01 %\n",
      "0.7207743857036486 68.51 %\n",
      "0.721359940872136 69.01 %\n",
      "0.7217901687454146 69.51 %\n",
      "0.7223597960670065 70.01 %\n",
      "0.7228410241573846 70.51 %\n",
      "0.722820623294557 71.01 %\n",
      "0.7224757558471192 71.51 %\n",
      "0.7225998300764656 72.01 %\n",
      "0.7231439820022497 72.51 %\n",
      "0.7228898826159866 73.01 %\n",
      "0.7233865371269952 73.51 %\n",
      "0.7239762856748931 74.01 %\n",
      "0.7236373596274993 74.51 %\n",
      "0.7238846572361263 75.01 %\n",
      "0.7239935152661443 75.51 %\n",
      "0.724771873322598 76.01 %\n",
      "0.7247400693148494 76.51 %\n",
      "0.7251655629139073 77.01 %\n",
      "0.7263157894736842 77.51 %\n",
      "0.727141922825376 78.01 %\n",
      "0.7273554256010396 78.51 %\n",
      "0.7268853305785123 79.01 %\n",
      "0.7272260713369259 79.51 %\n",
      "0.7276785714285714 80.01 %\n",
      "0.7281368821292775 80.51 %\n",
      "0.7278911564625851 81.01 %\n",
      "0.728274480340596 81.51 %\n",
      "0.7276007964161274 82.01 %\n",
      "0.7273964131106988 82.51 %\n",
      "0.7280885064535956 83.01 %\n",
      "0.7286726961623075 83.51 %\n",
      "0.7278911564625851 84.01 %\n",
      "0.7276020284955325 84.51 %\n",
      "0.728233457427645 85.01 %\n",
      "0.7277068162826787 85.51 %\n",
      "0.7281034892000949 86.01 %\n",
      "0.728259587020649 86.51 %\n",
      "0.7276246334310851 87.01 %\n",
      "0.7276630308656301 88.01 %\n",
      "0.7275245239469129 88.51 %\n",
      "0.7265006312406749 89.01 %\n",
      "0.726649920073076 89.51 %\n",
      "0.727262404905189 90.01 %\n",
      "0.7269030946464875 90.51 %\n",
      "0.7272012578616353 91.01 %\n",
      "0.7273235031277927 91.51 %\n",
      "0.7276061346965993 92.01 %\n",
      "0.7284687672747374 92.51 %\n",
      "0.7286327136728633 93.01 %\n",
      "0.7277601488127804 93.51 %\n",
      "0.7278267493742518 94.01 %\n",
      "0.7268593699253004 94.51 %\n",
      "0.7275665194441452 95.01 %\n",
      "0.7268245632836781 95.51 %\n",
      "0.7272824232081911 96.01 %\n",
      "0.7267614601018676 96.51 %\n",
      "0.7260346283783784 97.01 %\n",
      "0.7256878806973325 97.51 %\n",
      "0.7253447555369829 98.01 %\n",
      "0.7251559251559252 98.51 %\n",
      "0.7258248009101251 99.01 %\n",
      "0.7258130918073281 99.51 %\n"
     ]
    }
   ],
   "source": [
    "test_data = load_dataset('wikisql', split='test')\n",
    "\n",
    "print(len(test_data))\n",
    "n =10000\n",
    "\n",
    "count = 0\n",
    "correct_samples = 0\n",
    "for i in range(0,n,1):\n",
    "  #print('processed', 100*(i+1)/n,'%')  \n",
    "  question = 'translate to SQL: ' + test_data[i]['question'] + ' table ID: ' + ', '.join(str(x) for x in test_data[i]['table']['header'])   \n",
    "  sql = translate_to_sql(question)\n",
    "  #print(sql, test_data[i]['question'])\n",
    "  #output = correct_query(sql, test_data[i]['table']['header'])  \n",
    "  #output = correct_mispelling(test_data[i]['question'], output)\n",
    "  #target = correct_query(test_data[i]['sql']['human_readable'], test_data[i]['table']['header'])\n",
    "  try:     \n",
    "    output = correct_query(sql, test_data[i]['table']['header'])\n",
    "    output = correct_mispelling(test_data[i]['question'], output)\n",
    "    target = correct_query(test_data[i]['sql']['human_readable'], test_data[i]['table']['header'])\n",
    "    #output = sql\n",
    "    #target = test_data[i]['sql']['human_readable']\n",
    "    correct_samples = correct_samples + 1\n",
    "    if output.lower() == target.lower():\n",
    "      count = count + 1     \n",
    "    else:\n",
    "      #print(question)\n",
    "      #print(output)   \n",
    "      #print(target)      \n",
    "      pass\n",
    "    if i % 50 == 0:\n",
    "        print(count/correct_samples, 100*(i+1)/n,'%')   \n",
    "  except Exception as err:\n",
    "    #print(f\"Unexpected {err=}, {type(err)=}\")\n",
    "    #print('---Error-- ')  \n",
    "    #print(sql) \n",
    "    #print(test_data[i]['sql']['human_readable'])\n",
    "    #print(test_data[i]['table']['header'])\n",
    "    pass\n",
    "  #output = translate_to_sql(question)\n",
    "  #target = test_data[i]['sql']['human_readable']\n",
    "  #print(question)\n",
    "  #print(output)  \n",
    "  #print(target) \n",
    "print(count/n)\n",
    "print(count/correct_samples)\n",
    "print(correct_samples)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8a64367c-63e8-4621-9dc8-f80c7944809f",
   "metadata": {
    "papermill": {
     "duration": 1.247871,
     "end_time": "2023-02-01T15:55:55.285210",
     "exception": false,
     "start_time": "2023-02-01T15:55:54.037339",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "with valohai.logger() as logger:\n",
    "    logger.log('accuracy', count/correct_samples)\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "94830d9c-7688-4b66-8b07-0bc5b0b0f8d1",
   "metadata": {
    "papermill": {
     "duration": 1.337796,
     "end_time": "2023-02-01T15:55:57.940900",
     "exception": false,
     "start_time": "2023-02-01T15:55:56.603104",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "print(count)\n",
    "print(correct_samples)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e4d06297-007d-4d42-8fc4-e153a857a953",
   "metadata": {
    "papermill": {
     "duration": 1.317653,
     "end_time": "2023-02-01T15:56:00.574479",
     "exception": false,
     "start_time": "2023-02-01T15:55:59.256826",
     "status": "completed"
    },
    "tags": []
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.11"
  },
  "papermill": {
   "default_parameters": {},
   "duration": 8853.368468,
   "end_time": "2023-02-01T15:56:05.444982",
   "environment_variables": {},
   "exception": null,
   "input_path": "/valohai/repository/txt2sql_t5_small_training.ipynb",
   "output_path": "/valohai/outputs/txt2sql_t5_small_training.ipynb",
   "parameters": {},
   "start_time": "2023-02-01T13:28:32.076514",
   "version": "2.3.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}