File size: 7,063 Bytes
1d6d5bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
#!/usr/bin/env python3
# Copyright 2023-2024 NXP
# SPDX-License-Identifier: MIT
import cv2
import tensorflow as tf
import numpy as np
import time
import random
random.seed(42)
OBJECT_DETECTOR_TFLITE = 'yolov4-tiny_416_quant.tflite'
LABELS_FILE = 'coco-labels-2014_2017.txt'
IMAGE_FILENAME = 'example_input.jpg'
SCORE_THRESHOLD = 0.20
NMS_IOU_THRESHOLD = 0.5
INFERENCE_IMG_SIZE = 416
MAX_DETS = 100
ANCHORS = [[[81, 82], [135, 169], [344, 319]], [[23, 27], [37, 58], [81, 82]]]
SIGMOID_FACTOR = [1.05, 1.05]
NUM_ANCHORS = 3
STRIDES = [32, 16]
GRID_SIZES = [int(INFERENCE_IMG_SIZE / s) for s in STRIDES]
with open(LABELS_FILE, 'r') as f:
COCO_CLASSES = [line.strip() for line in f.readlines()]
interpreter = tf.lite.Interpreter(OBJECT_DETECTOR_TFLITE)
interpreter.allocate_tensors()
def gen_box_colors():
colors = []
for _ in range(len(COCO_CLASSES)):
r = random.randint(100, 255)
g = random.randint(100, 255)
b = random.randint(100, 255)
colors.append((r, g, b))
return colors
BOX_COLORS = gen_box_colors()
def load_image(filename):
orig_image = cv2.imread(filename, 1)
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (INFERENCE_IMG_SIZE, INFERENCE_IMG_SIZE))
image = np.expand_dims(image, axis=0)
image = image / 255.0
return orig_image, image
def np_sigmoid(x):
return 1 / (1 + np.exp(-x))
def reciprocal_sigmoid(x):
return -np.log(1 / x - 1)
def decode_boxes_prediction(yolo_output):
# Each output level represents a grid of predictions.
# The first output level is a 26x26 grid and the second 13x13.
# Each cell of each grid is assigned to 3 anchor bounding boxes.
# The bounding box predictions are regressed
# relatively to these anchor boxes.
# Thus, the model predicts 3 bounding boxes per cell per output level.
# The output is structured as follows:
# For each cell [[x, y, w, h, conf, cl_0, cl_1, ..., cl_79], # anchor 1
# [x, y, w, h, conf, cl_0, cl_1, ..., cl_79], # anchor 2
# [x, y, w, h, conf, cl_0, cl_1, ..., cl_79]] # anchor 3
# Hence, we have 85 values per anchor box, and thus 255 values per cell.
# The decoding of the output bounding boxes is described in Figure 2 of
# the YOLOv3 paper https://arxiv.org/pdf/1804.02767.pdf;
boxes_list = []
scores_list = []
classes_list = []
for idx, feats in enumerate(yolo_output):
features = np.reshape(feats, (NUM_ANCHORS * GRID_SIZES[idx] ** 2, 85))
anchor = np.array(ANCHORS[idx])
factor = SIGMOID_FACTOR[idx]
grid_size = GRID_SIZES[idx]
stride = STRIDES[idx]
cell_confidence = features[..., 4]
logit_threshold = reciprocal_sigmoid(SCORE_THRESHOLD)
over_threshold_list = np.where(cell_confidence > logit_threshold)
if over_threshold_list[0].size > 0:
indices = np.array(over_threshold_list[0])
box_positions = np.floor_divide(indices, 3)
list_xy = np.array(np.divmod(box_positions, grid_size)).T
list_xy = list_xy[..., ::-1]
boxes_xy = np.reshape(list_xy, (int(list_xy.size / 2), 2))
outxy = features[indices, :2]
# boxes center coordinates
centers = np_sigmoid(outxy * factor) - 0.5 * (factor - 1)
centers += boxes_xy
centers *= stride
# boxes width and height
width_height = np.exp(features[indices, 2:4])
width_height *= anchor[np.divmod(indices, NUM_ANCHORS)[1]]
boxes_list.append(np.stack([centers[:, 0] - width_height[:, 0]/2,
centers[:, 1] - width_height[:, 1]/2,
centers[:, 0] + width_height[:, 0]/2,
centers[:, 1] + width_height[:, 1]/2],
axis=1))
# confidence that cell contains an object
scores_list.append(np_sigmoid(features[indices, 4:5]))
# class with the highest probability in this cell
classes_list.append(np.argmax(features[indices, 5:], axis=1))
if len(boxes_list) > 0:
boxes = np.concatenate(boxes_list, axis=0)
scores = np.concatenate(scores_list, axis=0)[:, 0]
classes = np.concatenate(classes_list, axis=0)
return boxes, scores, classes
else:
return np.zeros((0, 4)), np.zeros((0)), np.zeros((0))
def decode_output(yolo_outputs,
score_threshold=SCORE_THRESHOLD,
iou_threshold=NMS_IOU_THRESHOLD):
'''
Decode output from YOLOv4 tiny in inference size referential (416x416)
'''
boxes, scores, classes = decode_boxes_prediction(yolo_outputs)
# apply NMS from tensorflow
inds = tf.image.non_max_suppression(boxes, scores, MAX_DETS,
score_threshold=score_threshold,
iou_threshold=iou_threshold)
# keep only selected boxes
boxes = tf.gather(boxes, inds)
scores = tf.gather(scores, inds)
classes = tf.gather(classes, inds)
return scores, boxes, classes
def run_inference(interpreter, image, threshold=SCORE_THRESHOLD):
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
input_scale, input_zero_point = input_details[0]["quantization"]
image = image / input_scale + input_zero_point
image = image.astype(np.int8)
interpreter.set_tensor(input_details[0]['index'], image)
interpreter.invoke()
boxes = interpreter.get_tensor(output_details[0]['index'])
boxes2 = interpreter.get_tensor(output_details[1]['index'])
return [boxes, boxes2]
if __name__ == "__main__":
orig_image, processed_image = load_image(IMAGE_FILENAME)
start = time.time()
yolo_output = run_inference(interpreter, processed_image)
end = time.time()
scores, boxes, classes = decode_output(yolo_output)
# rescale boxes for display
shp = orig_image.shape
boxes = boxes.numpy()
boxes /= INFERENCE_IMG_SIZE
boxes *= np.array([shp[1], shp[0], shp[1], shp[0]])
boxes = boxes.astype(np.int32)
print("Inference time", end - start, "ms")
print("Detected", boxes.shape[0], "object(s)")
print("Box coordinates:")
for i in range(boxes.shape[0]):
box = boxes[i, :]
print(box, end=" ")
class_name = COCO_CLASSES[classes[i].numpy()]
score = scores[i].numpy()
color = BOX_COLORS[classes[i]]
print("class", class_name, end=" ")
print("score", score)
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]),
color, 3)
cv2.putText(orig_image, f"{class_name} {score:.2f}",
(box[0], box[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.imwrite('example_output.jpg', orig_image)
cv2.imshow('', orig_image)
cv2.waitKey()
|