Platypus-30B / README.md
Ariel Lee
Update README.md
8cb3d80
|
raw
history blame
2.88 kB
metadata
language:
  - en
tags:
  - llama
license: other
metrics:
  - MMLU
  - ARC
  - HellaSwag
  - TruthfulQA

🥳 Platypus-30B has arrived!

Platypus-30B is an instruction fine-tuned model based on the LLaMA-30B transformer architecture and takes advantage of LoRA.

Metric Value
MMLU (5-shot) 65.4
ARC (25-shot) 64.6
HellaSwag (10-shot) 84.3
TruthfulQA (0-shot) 45.8
Avg. 65

Model Details

  • Trained by: Cole Hunter & Ariel Lee
  • Model type: Platypus-30B is an auto-regressive language model based on the LLaMA transformer architecture.
  • Language(s): English
  • License for base weights: License for the base LLaMA model's weights is Meta's non-commercial bespoke license.
Hyperparameter Value
nparametersn_\text{parameters} 33B
dmodeld_\text{model} 6656
nlayersn_\text{layers} 60
nheadsn_\text{heads} 52

Training Dataset

Dataset of highly filtered and curated question and answer pairs. Release TBD.

Training Procedure

lilloukas/Platypus-30B was instruction fine-tuned using LoRA on 4 A100 80GB. For training details and inference instructions please see the Platypus-30B GitHub repo.

Limitations and bias

The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA paper. We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly.

Citations

@article{touvron2023llama,
  title={LLaMA: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
@article{DBLP:journals/corr/abs-2106-09685,
  author       = {Edward J. Hu and
                  Yelong Shen and
                  Phillip Wallis and
                  Zeyuan Allen{-}Zhu and
                  Yuanzhi Li and
                  Shean Wang and
                  Weizhu Chen},
  title        = {LoRA: Low-Rank Adaptation of Large Language Models},
  journal      = {CoRR},
  year         = {2021},
  url          = {https://arxiv.org/abs/2106.09685},
}