File size: 2,845 Bytes
610614f
 
 
 
53d8e89
610614f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: distilbert-base-uncased
model-index:
- name: OpenDispatcher_v2_gpt35turbo_and_gpt4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenDispatcher_v2_gpt35turbo_and_gpt4

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5490

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6348        | 0.07  | 100  | 0.5852          |
| 0.5826        | 0.14  | 200  | 0.5731          |
| 0.5683        | 0.21  | 300  | 0.5681          |
| 0.5606        | 0.28  | 400  | 0.5640          |
| 0.5557        | 0.35  | 500  | 0.5705          |
| 0.5637        | 0.41  | 600  | 0.5647          |
| 0.5655        | 0.48  | 700  | 0.5569          |
| 0.5565        | 0.55  | 800  | 0.5747          |
| 0.5656        | 0.62  | 900  | 0.5570          |
| 0.5545        | 0.69  | 1000 | 0.5573          |
| 0.5474        | 0.76  | 1100 | 0.5595          |
| 0.5566        | 0.83  | 1200 | 0.5539          |
| 0.5738        | 0.9   | 1300 | 0.5499          |
| 0.5727        | 0.97  | 1400 | 0.5499          |
| 0.5463        | 1.04  | 1500 | 0.5683          |
| 0.5396        | 1.1   | 1600 | 0.5529          |
| 0.5529        | 1.17  | 1700 | 0.5603          |
| 0.5444        | 1.24  | 1800 | 0.5540          |
| 0.5388        | 1.31  | 1900 | 0.5652          |
| 0.5347        | 1.38  | 2000 | 0.5563          |
| 0.5303        | 1.45  | 2100 | 0.5542          |
| 0.5419        | 1.52  | 2200 | 0.5480          |
| 0.5344        | 1.59  | 2300 | 0.5512          |
| 0.5316        | 1.66  | 2400 | 0.5548          |
| 0.5487        | 1.73  | 2500 | 0.5500          |
| 0.5388        | 1.8   | 2600 | 0.5472          |
| 0.5423        | 1.86  | 2700 | 0.5469          |
| 0.5067        | 1.93  | 2800 | 0.5521          |
| 0.5236        | 2.0   | 2900 | 0.5482          |
| 0.5126        | 2.07  | 3000 | 0.5490          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Tokenizers 0.15.2