GIELLM-13B-jpllm / README.md
ganchengguang's picture
Update README.md
a35f278
|
raw
history blame
743 Bytes
metadata
license: mit

Please following paper's format to use this model.

input: SPRiNGSと最も仲の良いライバルグループ。 <社会><文芸><学問><技術><自然> 固有表現抽出

output: <社会>固有表現抽出:その他の組織名;SPRiNGS

generated_ids = model.generate(inputs, max_new_tokens=2000) #Don't need any other set, just max new tokens.

paper cite: https://arxiv.org/abs/2311.06838

bib: @misc{gan2023giellm, title={GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect}, author={Chengguang Gan and Qinghao Zhang and Tatsunori Mori}, year={2023}, eprint={2311.06838}, archivePrefix={arXiv}, primaryClass={cs.CL} }