File size: 2,481 Bytes
ffc6710
 
 
 
3c642ac
ffc6710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- audio-classification
- generated_from_trainer
- wolof
metrics:
- accuracy
- precision
- f1
model-index:
- name: wavlm-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wavlm-base

This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the galsenai/waxal_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1345
- Accuracy: 0.6783
- Precision: 0.8774
- F1: 0.7615

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 120
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 32.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|
| 4.4506        | 2.53  | 500  | 4.8601          | 0.0224   | 0.0136    | 0.0066 |
| 3.0523        | 5.05  | 1000 | 4.6674          | 0.0720   | 0.0460    | 0.0394 |
| 1.949         | 7.58  | 1500 | 4.1533          | 0.1156   | 0.1847    | 0.1064 |
| 1.3427        | 10.1  | 2000 | 3.8173          | 0.1448   | 0.2382    | 0.1347 |
| 1.0064        | 12.63 | 2500 | 3.5546          | 0.2183   | 0.4464    | 0.2385 |
| 0.7985        | 15.15 | 3000 | 3.1172          | 0.3842   | 0.6336    | 0.4258 |
| 0.6505        | 17.68 | 3500 | 2.9231          | 0.5165   | 0.7677    | 0.5995 |
| 0.5367        | 20.2  | 4000 | 2.4935          | 0.5961   | 0.8182    | 0.6755 |
| 0.465         | 22.73 | 4500 | 2.2411          | 0.6412   | 0.8624    | 0.7272 |
| 0.4075        | 25.25 | 5000 | 2.1345          | 0.6783   | 0.8774    | 0.7615 |
| 0.3793        | 27.78 | 5500 | 2.2535          | 0.6681   | 0.8792    | 0.7543 |
| 0.3418        | 30.3  | 6000 | 2.3390          | 0.6662   | 0.8905    | 0.7576 |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2