MetaModel_moe / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
4804c33 verified
|
raw
history blame
5.46 kB
metadata
license: apache-2.0
tags:
  - moe
  - mixtral
model-index:
  - name: MetaModel_moe
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 71.25
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/MetaModel_moe
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.4
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/MetaModel_moe
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.26
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/MetaModel_moe
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 71.86
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/MetaModel_moe
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/MetaModel_moe
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.43
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/MetaModel_moe
          name: Open LLM Leaderboard

MetaModel_moe

This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:

🧩 Configuration

base_model: gagan3012/MetaModel
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: gagan3012/MetaModel
- source_model: jeonsworld/CarbonVillain-en-10.7B-v2
- source_model: jeonsworld/CarbonVillain-en-10.7B-v4
- source_model: TomGrc/FusionNet_linear

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gagan3012/MetaModel_moe"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.42
ARC (25-shot) 71.25
HellaSwag (10-shot) 88.4
MMLU (5-shot) 66.26
TruthfulQA (0-shot) 71.86
Winogrande (5-shot) 83.35
GSM8K (5-shot) 65.43

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.42
AI2 Reasoning Challenge (25-Shot) 71.25
HellaSwag (10-Shot) 88.40
MMLU (5-Shot) 66.26
TruthfulQA (0-shot) 71.86
Winogrande (5-shot) 83.35
GSM8k (5-shot) 65.43