File size: 3,403 Bytes
914d155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torchvision\n",
"from torch import nn, optim\n",
"from torch.autograd import Variable\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"mnist_data = torchvision.datasets.MNIST(\n",
" \"mnist_data\", train=True, transform=torchvision.transforms.ToTensor(), download=True\n",
")\n",
"mnist_dataloader = torch.utils.data.DataLoader(mnist_data, batch_size=50)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"class Mnet(nn.Module):\n",
" def __init__(self):\n",
" super(Mnet, self).__init__()\n",
" self.linear1 = nn.Linear(28 * 28, 400)\n",
" self.linear2 = nn.Linear(400, 200)\n",
" self.linear3 = nn.Linear(200, 100)\n",
" self.linear4 = nn.Linear(100, 50)\n",
" self.linear5 = nn.Linear(50, 25)\n",
" self.final_linear = nn.Linear(25, 10)\n",
"\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, images):\n",
" x = images.view(-1, 28 * 28)\n",
" x = self.relu(self.linear1(x))\n",
" x = self.relu(self.linear2(x))\n",
" x = self.relu(self.linear3(x))\n",
" x = self.relu(self.linear4(x))\n",
" x = self.relu(self.linear5(x))\n",
" x = self.final_linear(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 50/50 [21:18<00:00, 25.57s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"final loss: 1.1586851087486139e-06\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from tqdm import tqdm\n",
"model = Mnet()\n",
"cec_loss = nn.CrossEntropyLoss()\n",
"params = model.parameters()\n",
"optimizer = optim.Adam(params=params, lr=0.001)\n",
"\n",
"n_epochs = 50\n",
"n_iterations = 0\n",
"\n",
"for e in tqdm(range(n_epochs)):\n",
" for i, (images, labels) in enumerate(mnist_dataloader):\n",
" output = model(images)\n",
"\n",
" model.zero_grad()\n",
" loss = cec_loss(output, labels)\n",
" loss.backward()\n",
"\n",
" optimizer.step()\n",
" n_iterations+=1\n",
"\n",
"print(f'final loss: {loss.item()}')"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"torch.save(model, \"mnistmodel.pt\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|