metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mdeberta-domain_EN_fold1
results: []
mdeberta-domain_EN_fold1
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5362
- Accuracy: 0.8288
- Precision: 0.7887
- Recall: 0.7656
- F1: 0.7752
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.0312 | 1.0 | 19 | 0.8773 | 0.5890 | 0.8630 | 0.3333 | 0.2471 |
0.7596 | 2.0 | 38 | 0.7653 | 0.5890 | 0.8630 | 0.3333 | 0.2471 |
0.7097 | 3.0 | 57 | 0.7352 | 0.5890 | 0.8630 | 0.3333 | 0.2471 |
0.6673 | 4.0 | 76 | 0.7382 | 0.7466 | 0.6626 | 0.5889 | 0.5519 |
0.6028 | 5.0 | 95 | 0.7362 | 0.7740 | 0.6837 | 0.6406 | 0.5884 |
0.4939 | 6.0 | 114 | 0.6345 | 0.7466 | 0.6145 | 0.6034 | 0.5967 |
0.3969 | 7.0 | 133 | 0.5446 | 0.8014 | 0.7220 | 0.7140 | 0.6938 |
0.3291 | 8.0 | 152 | 0.5437 | 0.8082 | 0.7452 | 0.7468 | 0.7410 |
0.2975 | 9.0 | 171 | 0.5534 | 0.7945 | 0.7437 | 0.7101 | 0.7235 |
0.2573 | 10.0 | 190 | 0.5362 | 0.8288 | 0.7887 | 0.7656 | 0.7752 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1