--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-domain_EN_fold1 results: [] --- # mdeberta-domain_EN_fold1 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5362 - Accuracy: 0.8288 - Precision: 0.7887 - Recall: 0.7656 - F1: 0.7752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0312 | 1.0 | 19 | 0.8773 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.7596 | 2.0 | 38 | 0.7653 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.7097 | 3.0 | 57 | 0.7352 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.6673 | 4.0 | 76 | 0.7382 | 0.7466 | 0.6626 | 0.5889 | 0.5519 | | 0.6028 | 5.0 | 95 | 0.7362 | 0.7740 | 0.6837 | 0.6406 | 0.5884 | | 0.4939 | 6.0 | 114 | 0.6345 | 0.7466 | 0.6145 | 0.6034 | 0.5967 | | 0.3969 | 7.0 | 133 | 0.5446 | 0.8014 | 0.7220 | 0.7140 | 0.6938 | | 0.3291 | 8.0 | 152 | 0.5437 | 0.8082 | 0.7452 | 0.7468 | 0.7410 | | 0.2975 | 9.0 | 171 | 0.5534 | 0.7945 | 0.7437 | 0.7101 | 0.7235 | | 0.2573 | 10.0 | 190 | 0.5362 | 0.8288 | 0.7887 | 0.7656 | 0.7752 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1