File size: 2,672 Bytes
be448dc
77de086
 
be448dc
 
c2b2c14
 
 
 
 
be448dc
 
 
 
 
 
 
 
 
 
2ec7aee
c2b2c14
a42a1e0
 
 
 
 
 
be448dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43be8f5
be448dc
 
 
 
 
 
 
 
 
 
c2b2c14
 
 
 
a42a1e0
 
 
 
 
 
 
 
 
 
c2b2c14
 
be448dc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---

license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2-classifier
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-classifier

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0684
- Accuracy: 0.4474
- Precision: 0.3646
- Recall: 0.4474
- F1: 0.3683
- Binary: 0.6094

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.96  | 50   | 4.2611          | 0.0647   | 0.0196    | 0.0647 | 0.0252 | 0.3121 |

| 4.403         | 1.91  | 100  | 3.9746          | 0.0889   | 0.0305    | 0.0889 | 0.0343 | 0.3509 |

| 4.1379        | 2.87  | 150  | 3.7561          | 0.1698   | 0.0733    | 0.1698 | 0.0880 | 0.4135 |

| 3.8988        | 3.83  | 200  | 3.5600          | 0.2372   | 0.1619    | 0.2372 | 0.1527 | 0.4652 |

| 3.6407        | 4.78  | 250  | 3.4072          | 0.3019   | 0.2248    | 0.3019 | 0.2174 | 0.5100 |

| 3.5551        | 5.74  | 300  | 3.2951          | 0.3720   | 0.2851    | 0.3720 | 0.2858 | 0.5555 |

| 3.4319        | 6.7   | 350  | 3.2052          | 0.4070   | 0.3239    | 0.4070 | 0.3214 | 0.5803 |

| 3.3287        | 7.66  | 400  | 3.1429          | 0.4151   | 0.3738    | 0.4151 | 0.3421 | 0.5868 |

| 3.1949        | 8.61  | 450  | 3.0862          | 0.4555   | 0.3707    | 0.4555 | 0.3759 | 0.6178 |

| 3.2056        | 9.57  | 500  | 3.0684          | 0.4474   | 0.3646    | 0.4474 | 0.3683 | 0.6094 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1