fydhfzh's picture
End of training
721e5bf verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: wav2vec2-classifier-aug-ref
    results: []

wav2vec2-classifier-aug-ref

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6490
  • Accuracy: 0.8396
  • Precision: 0.8518
  • Recall: 0.8396
  • F1: 0.8378
  • Binary: 0.8887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.13 50 4.2247 0.0647 0.0139 0.0647 0.0177 0.3345
No log 0.27 100 3.9116 0.0930 0.0338 0.0930 0.0338 0.3598
No log 0.4 150 3.6537 0.1523 0.0800 0.1523 0.0856 0.4030
No log 0.54 200 3.4519 0.1860 0.1524 0.1860 0.1277 0.4245
No log 0.67 250 3.2675 0.3315 0.2378 0.3315 0.2500 0.5302
No log 0.81 300 3.0858 0.3450 0.2487 0.3450 0.2596 0.5395
No log 0.94 350 2.9341 0.3625 0.2613 0.3625 0.2730 0.5524
3.6847 1.08 400 2.7592 0.4461 0.3862 0.4461 0.3690 0.6132
3.6847 1.21 450 2.5895 0.5027 0.4694 0.5027 0.4387 0.6509
3.6847 1.35 500 2.4411 0.5566 0.5189 0.5566 0.4930 0.6887
3.6847 1.48 550 2.3212 0.5593 0.5286 0.5593 0.4985 0.6910
3.6847 1.62 600 2.1863 0.5903 0.5494 0.5903 0.5344 0.7135
3.6847 1.75 650 2.0742 0.6092 0.5808 0.6092 0.5618 0.7267
3.6847 1.89 700 1.9542 0.6442 0.6075 0.6442 0.5985 0.7512
2.5893 2.02 750 1.8513 0.6739 0.6664 0.6739 0.6306 0.7720
2.5893 2.16 800 1.7673 0.6806 0.6703 0.6806 0.6424 0.7755
2.5893 2.29 850 1.6589 0.7075 0.6837 0.7075 0.6696 0.7956
2.5893 2.43 900 1.5751 0.7035 0.6882 0.7035 0.6704 0.7933
2.5893 2.56 950 1.5010 0.7426 0.7286 0.7426 0.7164 0.8206
2.5893 2.7 1000 1.4422 0.7385 0.7346 0.7385 0.7169 0.8173
2.5893 2.83 1050 1.3884 0.7426 0.7328 0.7426 0.7170 0.8202
2.5893 2.97 1100 1.3253 0.7466 0.7319 0.7466 0.7218 0.8225
1.9357 3.1 1150 1.2850 0.7507 0.7492 0.7507 0.7297 0.8257
1.9357 3.24 1200 1.2297 0.7736 0.7781 0.7736 0.7541 0.8429
1.9357 3.37 1250 1.2131 0.7722 0.7738 0.7722 0.7528 0.8406
1.9357 3.51 1300 1.1359 0.7830 0.7835 0.7830 0.7652 0.8489
1.9357 3.64 1350 1.0756 0.8019 0.7958 0.8019 0.7870 0.8621
1.9357 3.78 1400 1.0650 0.7992 0.7994 0.7992 0.7826 0.8602
1.9357 3.91 1450 1.0384 0.7925 0.7841 0.7925 0.7731 0.8555
1.5532 4.05 1500 1.0125 0.7951 0.7957 0.7951 0.7794 0.8565
1.5532 4.18 1550 0.9956 0.7978 0.8071 0.7978 0.7844 0.8598
1.5532 4.32 1600 1.0085 0.7749 0.7802 0.7749 0.7600 0.8415
1.5532 4.45 1650 0.9397 0.7965 0.8091 0.7965 0.7850 0.8580
1.5532 4.59 1700 0.9449 0.7911 0.7945 0.7911 0.7751 0.8538
1.5532 4.72 1750 0.9208 0.7898 0.7909 0.7898 0.7731 0.8527
1.5532 4.86 1800 0.9147 0.7884 0.8127 0.7884 0.7797 0.8522
1.5532 4.99 1850 0.8418 0.8127 0.8136 0.8127 0.8020 0.8691
1.3035 5.12 1900 0.8513 0.8100 0.8227 0.8100 0.8033 0.8674
1.3035 5.26 1950 0.8372 0.8154 0.8232 0.8154 0.8088 0.8717
1.3035 5.39 2000 0.8166 0.8181 0.8246 0.8181 0.8102 0.8735
1.3035 5.53 2050 0.7987 0.8261 0.8414 0.8261 0.8208 0.8778
1.3035 5.66 2100 0.7924 0.8181 0.8347 0.8181 0.8143 0.8730
1.3035 5.8 2150 0.7732 0.8140 0.8273 0.8140 0.8092 0.8708
1.3035 5.93 2200 0.7636 0.8261 0.8410 0.8261 0.8222 0.8802
1.1281 6.07 2250 0.7663 0.8154 0.8275 0.8154 0.8070 0.8716
1.1281 6.2 2300 0.7494 0.8356 0.8498 0.8356 0.8305 0.8846
1.1281 6.34 2350 0.7347 0.8356 0.8466 0.8356 0.8329 0.8848
1.1281 6.47 2400 0.7434 0.8235 0.8391 0.8235 0.8212 0.8771
1.1281 6.61 2450 0.7393 0.8302 0.8422 0.8302 0.8248 0.8814
1.1281 6.74 2500 0.7178 0.8221 0.8383 0.8221 0.8173 0.8749
1.1281 6.88 2550 0.6919 0.8410 0.8559 0.8410 0.8385 0.8885
1.0069 7.01 2600 0.7236 0.8248 0.8435 0.8248 0.8213 0.8779
1.0069 7.15 2650 0.7048 0.8315 0.8474 0.8315 0.8301 0.8822
1.0069 7.28 2700 0.6997 0.8275 0.8417 0.8275 0.8243 0.8787
1.0069 7.42 2750 0.6953 0.8329 0.8505 0.8329 0.8316 0.8830
1.0069 7.55 2800 0.6893 0.8275 0.8410 0.8275 0.8255 0.8783
1.0069 7.69 2850 0.6927 0.8261 0.8404 0.8261 0.8245 0.8794
1.0069 7.82 2900 0.6865 0.8288 0.8436 0.8288 0.8264 0.8802
1.0069 7.96 2950 0.6795 0.8383 0.8523 0.8383 0.8373 0.8869
0.9224 8.09 3000 0.6662 0.8356 0.8469 0.8356 0.8343 0.8854
0.9224 8.23 3050 0.6768 0.8342 0.8487 0.8342 0.8336 0.8849
0.9224 8.36 3100 0.6751 0.8329 0.8454 0.8329 0.8321 0.8840
0.9224 8.5 3150 0.6766 0.8315 0.8421 0.8315 0.8301 0.8830
0.9224 8.63 3200 0.6634 0.8302 0.8393 0.8302 0.8283 0.8821
0.9224 8.77 3250 0.6624 0.8329 0.8437 0.8329 0.8310 0.8834
0.9224 8.9 3300 0.6615 0.8342 0.8478 0.8342 0.8325 0.8849
0.8806 9.04 3350 0.6619 0.8356 0.8485 0.8356 0.8345 0.8853
0.8806 9.17 3400 0.6459 0.8423 0.8557 0.8423 0.8411 0.8906
0.8806 9.31 3450 0.6463 0.8437 0.8565 0.8437 0.8427 0.8915
0.8806 9.44 3500 0.6529 0.8423 0.8532 0.8423 0.8403 0.8900
0.8806 9.58 3550 0.6525 0.8369 0.8489 0.8369 0.8352 0.8868
0.8806 9.71 3600 0.6544 0.8383 0.8487 0.8383 0.8363 0.8872
0.8806 9.84 3650 0.6494 0.8410 0.8528 0.8410 0.8394 0.8896
0.8806 9.98 3700 0.6490 0.8396 0.8518 0.8396 0.8378 0.8887

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1