File size: 9,216 Bytes
721e5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---

license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2-classifier-aug-ref
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-classifier-aug-ref

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6490
- Accuracy: 0.8396
- Precision: 0.8518
- Recall: 0.8396
- F1: 0.8378
- Binary: 0.8887

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.13  | 50   | 4.2247          | 0.0647   | 0.0139    | 0.0647 | 0.0177 | 0.3345 |

| No log        | 0.27  | 100  | 3.9116          | 0.0930   | 0.0338    | 0.0930 | 0.0338 | 0.3598 |

| No log        | 0.4   | 150  | 3.6537          | 0.1523   | 0.0800    | 0.1523 | 0.0856 | 0.4030 |

| No log        | 0.54  | 200  | 3.4519          | 0.1860   | 0.1524    | 0.1860 | 0.1277 | 0.4245 |

| No log        | 0.67  | 250  | 3.2675          | 0.3315   | 0.2378    | 0.3315 | 0.2500 | 0.5302 |

| No log        | 0.81  | 300  | 3.0858          | 0.3450   | 0.2487    | 0.3450 | 0.2596 | 0.5395 |

| No log        | 0.94  | 350  | 2.9341          | 0.3625   | 0.2613    | 0.3625 | 0.2730 | 0.5524 |

| 3.6847        | 1.08  | 400  | 2.7592          | 0.4461   | 0.3862    | 0.4461 | 0.3690 | 0.6132 |

| 3.6847        | 1.21  | 450  | 2.5895          | 0.5027   | 0.4694    | 0.5027 | 0.4387 | 0.6509 |

| 3.6847        | 1.35  | 500  | 2.4411          | 0.5566   | 0.5189    | 0.5566 | 0.4930 | 0.6887 |

| 3.6847        | 1.48  | 550  | 2.3212          | 0.5593   | 0.5286    | 0.5593 | 0.4985 | 0.6910 |

| 3.6847        | 1.62  | 600  | 2.1863          | 0.5903   | 0.5494    | 0.5903 | 0.5344 | 0.7135 |

| 3.6847        | 1.75  | 650  | 2.0742          | 0.6092   | 0.5808    | 0.6092 | 0.5618 | 0.7267 |

| 3.6847        | 1.89  | 700  | 1.9542          | 0.6442   | 0.6075    | 0.6442 | 0.5985 | 0.7512 |

| 2.5893        | 2.02  | 750  | 1.8513          | 0.6739   | 0.6664    | 0.6739 | 0.6306 | 0.7720 |

| 2.5893        | 2.16  | 800  | 1.7673          | 0.6806   | 0.6703    | 0.6806 | 0.6424 | 0.7755 |

| 2.5893        | 2.29  | 850  | 1.6589          | 0.7075   | 0.6837    | 0.7075 | 0.6696 | 0.7956 |

| 2.5893        | 2.43  | 900  | 1.5751          | 0.7035   | 0.6882    | 0.7035 | 0.6704 | 0.7933 |

| 2.5893        | 2.56  | 950  | 1.5010          | 0.7426   | 0.7286    | 0.7426 | 0.7164 | 0.8206 |

| 2.5893        | 2.7   | 1000 | 1.4422          | 0.7385   | 0.7346    | 0.7385 | 0.7169 | 0.8173 |

| 2.5893        | 2.83  | 1050 | 1.3884          | 0.7426   | 0.7328    | 0.7426 | 0.7170 | 0.8202 |

| 2.5893        | 2.97  | 1100 | 1.3253          | 0.7466   | 0.7319    | 0.7466 | 0.7218 | 0.8225 |

| 1.9357        | 3.1   | 1150 | 1.2850          | 0.7507   | 0.7492    | 0.7507 | 0.7297 | 0.8257 |

| 1.9357        | 3.24  | 1200 | 1.2297          | 0.7736   | 0.7781    | 0.7736 | 0.7541 | 0.8429 |

| 1.9357        | 3.37  | 1250 | 1.2131          | 0.7722   | 0.7738    | 0.7722 | 0.7528 | 0.8406 |

| 1.9357        | 3.51  | 1300 | 1.1359          | 0.7830   | 0.7835    | 0.7830 | 0.7652 | 0.8489 |

| 1.9357        | 3.64  | 1350 | 1.0756          | 0.8019   | 0.7958    | 0.8019 | 0.7870 | 0.8621 |

| 1.9357        | 3.78  | 1400 | 1.0650          | 0.7992   | 0.7994    | 0.7992 | 0.7826 | 0.8602 |

| 1.9357        | 3.91  | 1450 | 1.0384          | 0.7925   | 0.7841    | 0.7925 | 0.7731 | 0.8555 |

| 1.5532        | 4.05  | 1500 | 1.0125          | 0.7951   | 0.7957    | 0.7951 | 0.7794 | 0.8565 |

| 1.5532        | 4.18  | 1550 | 0.9956          | 0.7978   | 0.8071    | 0.7978 | 0.7844 | 0.8598 |

| 1.5532        | 4.32  | 1600 | 1.0085          | 0.7749   | 0.7802    | 0.7749 | 0.7600 | 0.8415 |

| 1.5532        | 4.45  | 1650 | 0.9397          | 0.7965   | 0.8091    | 0.7965 | 0.7850 | 0.8580 |

| 1.5532        | 4.59  | 1700 | 0.9449          | 0.7911   | 0.7945    | 0.7911 | 0.7751 | 0.8538 |

| 1.5532        | 4.72  | 1750 | 0.9208          | 0.7898   | 0.7909    | 0.7898 | 0.7731 | 0.8527 |

| 1.5532        | 4.86  | 1800 | 0.9147          | 0.7884   | 0.8127    | 0.7884 | 0.7797 | 0.8522 |

| 1.5532        | 4.99  | 1850 | 0.8418          | 0.8127   | 0.8136    | 0.8127 | 0.8020 | 0.8691 |

| 1.3035        | 5.12  | 1900 | 0.8513          | 0.8100   | 0.8227    | 0.8100 | 0.8033 | 0.8674 |

| 1.3035        | 5.26  | 1950 | 0.8372          | 0.8154   | 0.8232    | 0.8154 | 0.8088 | 0.8717 |

| 1.3035        | 5.39  | 2000 | 0.8166          | 0.8181   | 0.8246    | 0.8181 | 0.8102 | 0.8735 |

| 1.3035        | 5.53  | 2050 | 0.7987          | 0.8261   | 0.8414    | 0.8261 | 0.8208 | 0.8778 |

| 1.3035        | 5.66  | 2100 | 0.7924          | 0.8181   | 0.8347    | 0.8181 | 0.8143 | 0.8730 |

| 1.3035        | 5.8   | 2150 | 0.7732          | 0.8140   | 0.8273    | 0.8140 | 0.8092 | 0.8708 |

| 1.3035        | 5.93  | 2200 | 0.7636          | 0.8261   | 0.8410    | 0.8261 | 0.8222 | 0.8802 |

| 1.1281        | 6.07  | 2250 | 0.7663          | 0.8154   | 0.8275    | 0.8154 | 0.8070 | 0.8716 |

| 1.1281        | 6.2   | 2300 | 0.7494          | 0.8356   | 0.8498    | 0.8356 | 0.8305 | 0.8846 |

| 1.1281        | 6.34  | 2350 | 0.7347          | 0.8356   | 0.8466    | 0.8356 | 0.8329 | 0.8848 |

| 1.1281        | 6.47  | 2400 | 0.7434          | 0.8235   | 0.8391    | 0.8235 | 0.8212 | 0.8771 |

| 1.1281        | 6.61  | 2450 | 0.7393          | 0.8302   | 0.8422    | 0.8302 | 0.8248 | 0.8814 |

| 1.1281        | 6.74  | 2500 | 0.7178          | 0.8221   | 0.8383    | 0.8221 | 0.8173 | 0.8749 |

| 1.1281        | 6.88  | 2550 | 0.6919          | 0.8410   | 0.8559    | 0.8410 | 0.8385 | 0.8885 |

| 1.0069        | 7.01  | 2600 | 0.7236          | 0.8248   | 0.8435    | 0.8248 | 0.8213 | 0.8779 |

| 1.0069        | 7.15  | 2650 | 0.7048          | 0.8315   | 0.8474    | 0.8315 | 0.8301 | 0.8822 |

| 1.0069        | 7.28  | 2700 | 0.6997          | 0.8275   | 0.8417    | 0.8275 | 0.8243 | 0.8787 |

| 1.0069        | 7.42  | 2750 | 0.6953          | 0.8329   | 0.8505    | 0.8329 | 0.8316 | 0.8830 |

| 1.0069        | 7.55  | 2800 | 0.6893          | 0.8275   | 0.8410    | 0.8275 | 0.8255 | 0.8783 |

| 1.0069        | 7.69  | 2850 | 0.6927          | 0.8261   | 0.8404    | 0.8261 | 0.8245 | 0.8794 |

| 1.0069        | 7.82  | 2900 | 0.6865          | 0.8288   | 0.8436    | 0.8288 | 0.8264 | 0.8802 |

| 1.0069        | 7.96  | 2950 | 0.6795          | 0.8383   | 0.8523    | 0.8383 | 0.8373 | 0.8869 |

| 0.9224        | 8.09  | 3000 | 0.6662          | 0.8356   | 0.8469    | 0.8356 | 0.8343 | 0.8854 |

| 0.9224        | 8.23  | 3050 | 0.6768          | 0.8342   | 0.8487    | 0.8342 | 0.8336 | 0.8849 |

| 0.9224        | 8.36  | 3100 | 0.6751          | 0.8329   | 0.8454    | 0.8329 | 0.8321 | 0.8840 |

| 0.9224        | 8.5   | 3150 | 0.6766          | 0.8315   | 0.8421    | 0.8315 | 0.8301 | 0.8830 |

| 0.9224        | 8.63  | 3200 | 0.6634          | 0.8302   | 0.8393    | 0.8302 | 0.8283 | 0.8821 |

| 0.9224        | 8.77  | 3250 | 0.6624          | 0.8329   | 0.8437    | 0.8329 | 0.8310 | 0.8834 |

| 0.9224        | 8.9   | 3300 | 0.6615          | 0.8342   | 0.8478    | 0.8342 | 0.8325 | 0.8849 |

| 0.8806        | 9.04  | 3350 | 0.6619          | 0.8356   | 0.8485    | 0.8356 | 0.8345 | 0.8853 |

| 0.8806        | 9.17  | 3400 | 0.6459          | 0.8423   | 0.8557    | 0.8423 | 0.8411 | 0.8906 |

| 0.8806        | 9.31  | 3450 | 0.6463          | 0.8437   | 0.8565    | 0.8437 | 0.8427 | 0.8915 |

| 0.8806        | 9.44  | 3500 | 0.6529          | 0.8423   | 0.8532    | 0.8423 | 0.8403 | 0.8900 |

| 0.8806        | 9.58  | 3550 | 0.6525          | 0.8369   | 0.8489    | 0.8369 | 0.8352 | 0.8868 |

| 0.8806        | 9.71  | 3600 | 0.6544          | 0.8383   | 0.8487    | 0.8383 | 0.8363 | 0.8872 |

| 0.8806        | 9.84  | 3650 | 0.6494          | 0.8410   | 0.8528    | 0.8410 | 0.8394 | 0.8896 |

| 0.8806        | 9.98  | 3700 | 0.6490          | 0.8396   | 0.8518    | 0.8396 | 0.8378 | 0.8887 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1