fxmarty commited on
Commit
93f7d08
1 Parent(s): f51bd94

added model

Browse files
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 6.0,
3
+ "eval_accuracy": 0.9852222222222222,
4
+ "eval_loss": 0.05230661854147911,
5
+ "eval_runtime": 2.6574,
6
+ "eval_samples_per_second": 3386.794,
7
+ "eval_steps_per_second": 423.349,
8
+ "train_loss": 0.1922683648263396,
9
+ "train_runtime": 134.4457,
10
+ "train_samples_per_second": 2276.012,
11
+ "train_steps_per_second": 71.137
12
+ }
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ResNetForImageClassification"
4
+ ],
5
+ "depths": [
6
+ 2,
7
+ 2
8
+ ],
9
+ "downsample_in_first_stage": false,
10
+ "embedding_size": 64,
11
+ "hidden_act": "relu",
12
+ "hidden_sizes": [
13
+ 32,
14
+ 64
15
+ ],
16
+ "id2label": {
17
+ "0": "LABEL_0",
18
+ "1": "LABEL_1",
19
+ "2": "LABEL_2",
20
+ "3": "LABEL_3",
21
+ "4": "LABEL_4",
22
+ "5": "LABEL_5",
23
+ "6": "LABEL_6",
24
+ "7": "LABEL_7",
25
+ "8": "LABEL_8",
26
+ "9": "LABEL_9"
27
+ },
28
+ "label2id": {
29
+ "LABEL_0": 0,
30
+ "LABEL_1": 1,
31
+ "LABEL_2": 2,
32
+ "LABEL_3": 3,
33
+ "LABEL_4": 4,
34
+ "LABEL_5": 5,
35
+ "LABEL_6": 6,
36
+ "LABEL_7": 7,
37
+ "LABEL_8": 8,
38
+ "LABEL_9": 9
39
+ },
40
+ "layer_type": "basic",
41
+ "model_type": "resnet",
42
+ "num_channels": 1,
43
+ "problem_type": "single_label_classification",
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.19.0.dev0"
46
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 6.0,
3
+ "eval_accuracy": 0.9852222222222222,
4
+ "eval_loss": 0.05230661854147911,
5
+ "eval_runtime": 2.6574,
6
+ "eval_samples_per_second": 3386.794,
7
+ "eval_steps_per_second": 423.349
8
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_pct": null,
3
+ "do_normalize": false,
4
+ "do_resize": false,
5
+ "feature_extractor_type": "ConvNextFeatureExtractor",
6
+ "image_mean": [
7
+ 0.45
8
+ ],
9
+ "image_std": [
10
+ 0.22
11
+ ],
12
+ "resample": 3,
13
+ "size": 224
14
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72b3ed2e1f131afbe98687a782109fa539b77a1b60713d8be2cb09dab092db7f
3
+ size 763481
train.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import sys
3
+ from dataclasses import dataclass, field
4
+ from typing import Optional
5
+
6
+ import datasets
7
+ import torch
8
+ import transformers
9
+ from torchinfo import summary
10
+ from torchvision.transforms import Compose, Normalize, ToTensor
11
+ from transformers import (
12
+ ConvNextFeatureExtractor,
13
+ HfArgumentParser,
14
+ ResNetConfig,
15
+ ResNetForImageClassification,
16
+ Trainer,
17
+ TrainingArguments,
18
+ )
19
+ from transformers.utils import check_min_version
20
+ from transformers.utils.versions import require_version
21
+
22
+ import numpy as np
23
+
24
+
25
+ @dataclass
26
+ class DataTrainingArguments:
27
+ """
28
+ Arguments pertaining to what data we are going to input our model for training and eval.
29
+ Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
30
+ them on the command line.
31
+ """
32
+
33
+ train_val_split: Optional[float] = field(
34
+ default=0.15, metadata={"help": "Percent to split off of train for validation."}
35
+ )
36
+ max_train_samples: Optional[int] = field(
37
+ default=None,
38
+ metadata={
39
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
40
+ "value if set."
41
+ },
42
+ )
43
+ max_eval_samples: Optional[int] = field(
44
+ default=None,
45
+ metadata={
46
+ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
47
+ "value if set."
48
+ },
49
+ )
50
+
51
+
52
+ def collate_fn(examples):
53
+ pixel_values = torch.stack([example["pixel_values"] for example in examples])
54
+ labels = torch.tensor([example["label"] for example in examples])
55
+ return {"pixel_values": pixel_values, "labels": labels}
56
+
57
+
58
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
59
+ check_min_version("4.19.0.dev0")
60
+
61
+ require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
62
+
63
+ logger = logging.getLogger(__name__)
64
+
65
+ def main():
66
+ parser = HfArgumentParser((DataTrainingArguments, TrainingArguments))
67
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
68
+ # If we pass only one argument to the script and it's the path to a json file,
69
+ # let's parse it to get our arguments.
70
+ data_args, training_args = parser.parse_json_file(
71
+ json_file=os.path.abspath(sys.argv[1])
72
+ )
73
+ else:
74
+ data_args, training_args = parser.parse_args_into_dataclasses()
75
+
76
+ # Setup logging
77
+ logging.basicConfig(
78
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
79
+ datefmt="%m/%d/%Y %H:%M:%S",
80
+ handlers=[logging.StreamHandler(sys.stdout)],
81
+ )
82
+
83
+ log_level = training_args.get_process_log_level()
84
+ logger.setLevel(log_level)
85
+ transformers.utils.logging.set_verbosity(log_level)
86
+ transformers.utils.logging.enable_default_handler()
87
+ transformers.utils.logging.enable_explicit_format()
88
+
89
+ # Log on each process the small summary:
90
+ logger.warning(
91
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
92
+ + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
93
+ )
94
+
95
+ dataset = datasets.load_dataset("mnist")
96
+
97
+ data_args.train_val_split = (
98
+ None if "validation" in dataset.keys() else data_args.train_val_split
99
+ )
100
+ if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
101
+ split = dataset["train"].train_test_split(data_args.train_val_split)
102
+ dataset["train"] = split["train"]
103
+ dataset["validation"] = split["test"]
104
+
105
+ feature_extractor = ConvNextFeatureExtractor(
106
+ do_resize=False, do_normalize=False, image_mean=[0.45], image_std=[0.22]
107
+ )
108
+
109
+ config = ResNetConfig(
110
+ num_channels=1,
111
+ layer_type="basic",
112
+ depths=[2, 2],
113
+ hidden_sizes=[32, 64],
114
+ num_labels=10,
115
+ )
116
+
117
+ model = ResNetForImageClassification(config)
118
+
119
+ # Define torchvision transforms to be applied to each image.
120
+ normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
121
+ _transforms = Compose([ToTensor(), normalize])
122
+
123
+ def transforms(example_batch):
124
+ """Apply _train_transforms across a batch."""
125
+ # black and white
126
+ example_batch["pixel_values"] = [_transforms(pil_img.convert("L")) for pil_img in example_batch["image"]]
127
+ return example_batch
128
+
129
+ # Load the accuracy metric from the datasets package
130
+ metric = datasets.load_metric("accuracy")
131
+
132
+ # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
133
+ # predictions and label_ids field) and has to return a dictionary string to float.
134
+ def compute_metrics(p):
135
+ """Computes accuracy on a batch of predictions"""
136
+
137
+ accuracy = metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
138
+ return accuracy
139
+
140
+ if training_args.do_train:
141
+ if data_args.max_train_samples is not None:
142
+ dataset["train"] = (
143
+ dataset["train"]
144
+ .shuffle(seed=training_args.seed)
145
+ .select(range(data_args.max_train_samples))
146
+ )
147
+
148
+ logger.info("Setting train transform")
149
+ # Set the training transforms
150
+ dataset["train"].set_transform(transforms)
151
+
152
+ if training_args.do_eval:
153
+ if "validation" not in dataset:
154
+ raise ValueError("--do_eval requires a validation dataset")
155
+ if data_args.max_eval_samples is not None:
156
+ dataset["validation"] = (
157
+ dataset["validation"]
158
+ .shuffle(seed=training_args.seed)
159
+ .select(range(data_args.max_eval_samples))
160
+ )
161
+
162
+ logger.info("Setting validation transform")
163
+ # Set the validation transforms
164
+ dataset["validation"].set_transform(transforms)
165
+
166
+ from transformers import trainer_utils
167
+
168
+ print(dataset)
169
+
170
+ training_args = transformers.TrainingArguments(
171
+ output_dir=training_args.output_dir,
172
+ do_eval=training_args.do_eval,
173
+ do_train=training_args.do_train,
174
+ logging_steps = 500,
175
+ eval_steps = 500,
176
+ save_steps= 500,
177
+ remove_unused_columns = False, # we need to pass the `label` and `image`
178
+ per_device_train_batch_size = 32,
179
+ save_total_limit = 2,
180
+ evaluation_strategy = "steps",
181
+ num_train_epochs = 6,
182
+ )
183
+
184
+ logger.info(f"Training/evaluation parameters {training_args}")
185
+
186
+ trainer = Trainer(
187
+ model=model,
188
+ args=training_args,
189
+ train_dataset=dataset["train"] if training_args.do_train else None,
190
+ eval_dataset=dataset["validation"] if training_args.do_eval else None,
191
+ compute_metrics=compute_metrics,
192
+ tokenizer=feature_extractor,
193
+ data_collator=collate_fn,
194
+ )
195
+
196
+ # Training
197
+ if training_args.do_train:
198
+ train_result = trainer.train()
199
+ trainer.save_model()
200
+ trainer.log_metrics("train", train_result.metrics)
201
+ trainer.save_metrics("train", train_result.metrics)
202
+ trainer.save_state()
203
+
204
+ # Evaluation
205
+ if training_args.do_eval:
206
+ metrics = trainer.evaluate()
207
+ trainer.log_metrics("eval", metrics)
208
+ trainer.save_metrics("eval", metrics)
209
+
210
+ if __name__ == "__main__":
211
+ main()
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 6.0,
3
+ "train_loss": 0.1922683648263396,
4
+ "train_runtime": 134.4457,
5
+ "train_samples_per_second": 2276.012,
6
+ "train_steps_per_second": 71.137
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 6.0,
5
+ "global_step": 9564,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.31,
12
+ "learning_rate": 4.7386030949393564e-05,
13
+ "loss": 1.4207,
14
+ "step": 500
15
+ },
16
+ {
17
+ "epoch": 0.31,
18
+ "eval_accuracy": 0.9008888888888889,
19
+ "eval_loss": 0.7066789269447327,
20
+ "eval_runtime": 2.6965,
21
+ "eval_samples_per_second": 3337.621,
22
+ "eval_steps_per_second": 417.203,
23
+ "step": 500
24
+ },
25
+ {
26
+ "epoch": 0.63,
27
+ "learning_rate": 4.477206189878712e-05,
28
+ "loss": 0.5086,
29
+ "step": 1000
30
+ },
31
+ {
32
+ "epoch": 0.63,
33
+ "eval_accuracy": 0.9516666666666667,
34
+ "eval_loss": 0.3055577874183655,
35
+ "eval_runtime": 2.6576,
36
+ "eval_samples_per_second": 3386.509,
37
+ "eval_steps_per_second": 423.314,
38
+ "step": 1000
39
+ },
40
+ {
41
+ "epoch": 0.94,
42
+ "learning_rate": 4.215809284818068e-05,
43
+ "loss": 0.2731,
44
+ "step": 1500
45
+ },
46
+ {
47
+ "epoch": 0.94,
48
+ "eval_accuracy": 0.9648888888888889,
49
+ "eval_loss": 0.18555375933647156,
50
+ "eval_runtime": 2.6597,
51
+ "eval_samples_per_second": 3383.793,
52
+ "eval_steps_per_second": 422.974,
53
+ "step": 1500
54
+ },
55
+ {
56
+ "epoch": 1.25,
57
+ "learning_rate": 3.954412379757424e-05,
58
+ "loss": 0.1976,
59
+ "step": 2000
60
+ },
61
+ {
62
+ "epoch": 1.25,
63
+ "eval_accuracy": 0.9701111111111111,
64
+ "eval_loss": 0.14159560203552246,
65
+ "eval_runtime": 2.715,
66
+ "eval_samples_per_second": 3314.86,
67
+ "eval_steps_per_second": 414.357,
68
+ "step": 2000
69
+ },
70
+ {
71
+ "epoch": 1.57,
72
+ "learning_rate": 3.69301547469678e-05,
73
+ "loss": 0.1565,
74
+ "step": 2500
75
+ },
76
+ {
77
+ "epoch": 1.57,
78
+ "eval_accuracy": 0.9738888888888889,
79
+ "eval_loss": 0.11081045866012573,
80
+ "eval_runtime": 2.6963,
81
+ "eval_samples_per_second": 3337.905,
82
+ "eval_steps_per_second": 417.238,
83
+ "step": 2500
84
+ },
85
+ {
86
+ "epoch": 1.88,
87
+ "learning_rate": 3.431618569636136e-05,
88
+ "loss": 0.128,
89
+ "step": 3000
90
+ },
91
+ {
92
+ "epoch": 1.88,
93
+ "eval_accuracy": 0.976,
94
+ "eval_loss": 0.09747562557458878,
95
+ "eval_runtime": 2.6961,
96
+ "eval_samples_per_second": 3338.209,
97
+ "eval_steps_per_second": 417.276,
98
+ "step": 3000
99
+ },
100
+ {
101
+ "epoch": 2.2,
102
+ "learning_rate": 3.170221664575492e-05,
103
+ "loss": 0.1133,
104
+ "step": 3500
105
+ },
106
+ {
107
+ "epoch": 2.2,
108
+ "eval_accuracy": 0.9788888888888889,
109
+ "eval_loss": 0.08474569022655487,
110
+ "eval_runtime": 2.7245,
111
+ "eval_samples_per_second": 3303.375,
112
+ "eval_steps_per_second": 412.922,
113
+ "step": 3500
114
+ },
115
+ {
116
+ "epoch": 2.51,
117
+ "learning_rate": 2.9088247595148475e-05,
118
+ "loss": 0.1031,
119
+ "step": 4000
120
+ },
121
+ {
122
+ "epoch": 2.51,
123
+ "eval_accuracy": 0.9804444444444445,
124
+ "eval_loss": 0.07724875211715698,
125
+ "eval_runtime": 2.6363,
126
+ "eval_samples_per_second": 3413.847,
127
+ "eval_steps_per_second": 426.731,
128
+ "step": 4000
129
+ },
130
+ {
131
+ "epoch": 2.82,
132
+ "learning_rate": 2.6474278544542037e-05,
133
+ "loss": 0.09,
134
+ "step": 4500
135
+ },
136
+ {
137
+ "epoch": 2.82,
138
+ "eval_accuracy": 0.9818888888888889,
139
+ "eval_loss": 0.0697416290640831,
140
+ "eval_runtime": 2.6295,
141
+ "eval_samples_per_second": 3422.689,
142
+ "eval_steps_per_second": 427.836,
143
+ "step": 4500
144
+ },
145
+ {
146
+ "epoch": 3.14,
147
+ "learning_rate": 2.386030949393559e-05,
148
+ "loss": 0.0871,
149
+ "step": 5000
150
+ },
151
+ {
152
+ "epoch": 3.14,
153
+ "eval_accuracy": 0.9815555555555555,
154
+ "eval_loss": 0.066066212952137,
155
+ "eval_runtime": 2.6946,
156
+ "eval_samples_per_second": 3340.06,
157
+ "eval_steps_per_second": 417.507,
158
+ "step": 5000
159
+ },
160
+ {
161
+ "epoch": 3.45,
162
+ "learning_rate": 2.1246340443329153e-05,
163
+ "loss": 0.0733,
164
+ "step": 5500
165
+ },
166
+ {
167
+ "epoch": 3.45,
168
+ "eval_accuracy": 0.9822222222222222,
169
+ "eval_loss": 0.06342040002346039,
170
+ "eval_runtime": 2.6897,
171
+ "eval_samples_per_second": 3346.09,
172
+ "eval_steps_per_second": 418.261,
173
+ "step": 5500
174
+ },
175
+ {
176
+ "epoch": 3.76,
177
+ "learning_rate": 1.863237139272271e-05,
178
+ "loss": 0.0761,
179
+ "step": 6000
180
+ },
181
+ {
182
+ "epoch": 3.76,
183
+ "eval_accuracy": 0.983,
184
+ "eval_loss": 0.06072380393743515,
185
+ "eval_runtime": 2.6938,
186
+ "eval_samples_per_second": 3340.98,
187
+ "eval_steps_per_second": 417.623,
188
+ "step": 6000
189
+ },
190
+ {
191
+ "epoch": 4.08,
192
+ "learning_rate": 1.601840234211627e-05,
193
+ "loss": 0.0739,
194
+ "step": 6500
195
+ },
196
+ {
197
+ "epoch": 4.08,
198
+ "eval_accuracy": 0.9832222222222222,
199
+ "eval_loss": 0.05795769765973091,
200
+ "eval_runtime": 2.6767,
201
+ "eval_samples_per_second": 3362.391,
202
+ "eval_steps_per_second": 420.299,
203
+ "step": 6500
204
+ },
205
+ {
206
+ "epoch": 4.39,
207
+ "learning_rate": 1.340443329150983e-05,
208
+ "loss": 0.0643,
209
+ "step": 7000
210
+ },
211
+ {
212
+ "epoch": 4.39,
213
+ "eval_accuracy": 0.9844444444444445,
214
+ "eval_loss": 0.05685265362262726,
215
+ "eval_runtime": 2.6876,
216
+ "eval_samples_per_second": 3348.672,
217
+ "eval_steps_per_second": 418.584,
218
+ "step": 7000
219
+ },
220
+ {
221
+ "epoch": 4.71,
222
+ "learning_rate": 1.0790464240903388e-05,
223
+ "loss": 0.0678,
224
+ "step": 7500
225
+ },
226
+ {
227
+ "epoch": 4.71,
228
+ "eval_accuracy": 0.984,
229
+ "eval_loss": 0.05617769435048103,
230
+ "eval_runtime": 2.6484,
231
+ "eval_samples_per_second": 3398.278,
232
+ "eval_steps_per_second": 424.785,
233
+ "step": 7500
234
+ },
235
+ {
236
+ "epoch": 5.02,
237
+ "learning_rate": 8.176495190296946e-06,
238
+ "loss": 0.0617,
239
+ "step": 8000
240
+ },
241
+ {
242
+ "epoch": 5.02,
243
+ "eval_accuracy": 0.9853333333333333,
244
+ "eval_loss": 0.053985536098480225,
245
+ "eval_runtime": 2.672,
246
+ "eval_samples_per_second": 3368.244,
247
+ "eval_steps_per_second": 421.03,
248
+ "step": 8000
249
+ },
250
+ {
251
+ "epoch": 5.33,
252
+ "learning_rate": 5.562526139690506e-06,
253
+ "loss": 0.0571,
254
+ "step": 8500
255
+ },
256
+ {
257
+ "epoch": 5.33,
258
+ "eval_accuracy": 0.9847777777777778,
259
+ "eval_loss": 0.05352585390210152,
260
+ "eval_runtime": 2.7082,
261
+ "eval_samples_per_second": 3323.274,
262
+ "eval_steps_per_second": 415.409,
263
+ "step": 8500
264
+ },
265
+ {
266
+ "epoch": 5.65,
267
+ "learning_rate": 2.9485570890840656e-06,
268
+ "loss": 0.0608,
269
+ "step": 9000
270
+ },
271
+ {
272
+ "epoch": 5.65,
273
+ "eval_accuracy": 0.9851111111111112,
274
+ "eval_loss": 0.053133774548769,
275
+ "eval_runtime": 2.6753,
276
+ "eval_samples_per_second": 3364.134,
277
+ "eval_steps_per_second": 420.517,
278
+ "step": 9000
279
+ },
280
+ {
281
+ "epoch": 5.96,
282
+ "learning_rate": 3.345880384776244e-07,
283
+ "loss": 0.0571,
284
+ "step": 9500
285
+ },
286
+ {
287
+ "epoch": 5.96,
288
+ "eval_accuracy": 0.9847777777777778,
289
+ "eval_loss": 0.05344167724251747,
290
+ "eval_runtime": 2.6425,
291
+ "eval_samples_per_second": 3405.863,
292
+ "eval_steps_per_second": 425.733,
293
+ "step": 9500
294
+ },
295
+ {
296
+ "epoch": 6.0,
297
+ "step": 9564,
298
+ "total_flos": 264960533376000.0,
299
+ "train_loss": 0.1922683648263396,
300
+ "train_runtime": 134.4457,
301
+ "train_samples_per_second": 2276.012,
302
+ "train_steps_per_second": 71.137
303
+ }
304
+ ],
305
+ "max_steps": 9564,
306
+ "num_train_epochs": 6,
307
+ "total_flos": 264960533376000.0,
308
+ "trial_name": null,
309
+ "trial_params": null
310
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4e95a4ea032aa40c0216647955b0d7d2e98a98aba8f2db221e4606d6d0d474
3
+ size 3055