Felix Marty
commited on
Commit
·
f296fc3
1
Parent(s):
36beed7
added model
Browse files- README.md +2 -0
- all_results.json +12 -0
- config.json +32 -0
- eval_results.json +8 -0
- preprocessor_config.json +14 -0
- pytorch_model.bin +3 -0
- train.py +211 -0
- train_results.json +7 -0
- trainer_state.json +25 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
A model trained on the beans dataset, just for testing and having a really tiny model.
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"eval_accuracy": 0.518796992481203,
|
4 |
+
"eval_loss": 0.9727851152420044,
|
5 |
+
"eval_runtime": 0.6952,
|
6 |
+
"eval_samples_per_second": 191.321,
|
7 |
+
"eval_steps_per_second": 24.455,
|
8 |
+
"train_loss": 0.9793546272046638,
|
9 |
+
"train_runtime": 46.4278,
|
10 |
+
"train_samples_per_second": 133.627,
|
11 |
+
"train_steps_per_second": 4.265
|
12 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ResNetForImageClassification"
|
4 |
+
],
|
5 |
+
"depths": [
|
6 |
+
2,
|
7 |
+
2
|
8 |
+
],
|
9 |
+
"downsample_in_first_stage": false,
|
10 |
+
"embedding_size": 64,
|
11 |
+
"hidden_act": "relu",
|
12 |
+
"hidden_sizes": [
|
13 |
+
32,
|
14 |
+
64
|
15 |
+
],
|
16 |
+
"id2label": {
|
17 |
+
"0": "LABEL_0",
|
18 |
+
"1": "LABEL_1",
|
19 |
+
"2": "LABEL_2"
|
20 |
+
},
|
21 |
+
"label2id": {
|
22 |
+
"LABEL_0": 0,
|
23 |
+
"LABEL_1": 1,
|
24 |
+
"LABEL_2": 2
|
25 |
+
},
|
26 |
+
"layer_type": "basic",
|
27 |
+
"model_type": "resnet",
|
28 |
+
"num_channels": 1,
|
29 |
+
"problem_type": "single_label_classification",
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.21.0.dev0"
|
32 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"eval_accuracy": 0.518796992481203,
|
4 |
+
"eval_loss": 0.9727851152420044,
|
5 |
+
"eval_runtime": 0.6952,
|
6 |
+
"eval_samples_per_second": 191.321,
|
7 |
+
"eval_steps_per_second": 24.455
|
8 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_pct": null,
|
3 |
+
"do_normalize": false,
|
4 |
+
"do_resize": false,
|
5 |
+
"feature_extractor_type": "ConvNextFeatureExtractor",
|
6 |
+
"image_mean": [
|
7 |
+
0.45
|
8 |
+
],
|
9 |
+
"image_std": [
|
10 |
+
0.22
|
11 |
+
],
|
12 |
+
"resample": 3,
|
13 |
+
"size": 224
|
14 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fed11a151a68d9df16a542bac37db8525a7832fdf78c3bb56c3b2a409a717e2f
|
3 |
+
size 761689
|
train.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
from dataclasses import dataclass, field
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
import torch
|
8 |
+
import transformers
|
9 |
+
from torchinfo import summary
|
10 |
+
from torchvision.transforms import Compose, Normalize, ToTensor
|
11 |
+
from transformers import (
|
12 |
+
ConvNextFeatureExtractor,
|
13 |
+
HfArgumentParser,
|
14 |
+
ResNetConfig,
|
15 |
+
ResNetForImageClassification,
|
16 |
+
Trainer,
|
17 |
+
TrainingArguments,
|
18 |
+
)
|
19 |
+
from transformers.utils import check_min_version
|
20 |
+
from transformers.utils.versions import require_version
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class DataTrainingArguments:
|
27 |
+
"""
|
28 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
29 |
+
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
|
30 |
+
them on the command line.
|
31 |
+
"""
|
32 |
+
|
33 |
+
train_val_split: Optional[float] = field(
|
34 |
+
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
35 |
+
)
|
36 |
+
max_train_samples: Optional[int] = field(
|
37 |
+
default=None,
|
38 |
+
metadata={
|
39 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
40 |
+
"value if set."
|
41 |
+
},
|
42 |
+
)
|
43 |
+
max_eval_samples: Optional[int] = field(
|
44 |
+
default=None,
|
45 |
+
metadata={
|
46 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
47 |
+
"value if set."
|
48 |
+
},
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def collate_fn(examples):
|
53 |
+
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
54 |
+
labels = torch.tensor([example["labels"] for example in examples])
|
55 |
+
return {"pixel_values": pixel_values, "labels": labels}
|
56 |
+
|
57 |
+
|
58 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
59 |
+
check_min_version("4.19.0.dev0")
|
60 |
+
|
61 |
+
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
62 |
+
|
63 |
+
logger = logging.getLogger(__name__)
|
64 |
+
|
65 |
+
def main():
|
66 |
+
parser = HfArgumentParser((DataTrainingArguments, TrainingArguments))
|
67 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
68 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
69 |
+
# let's parse it to get our arguments.
|
70 |
+
data_args, training_args = parser.parse_json_file(
|
71 |
+
json_file=os.path.abspath(sys.argv[1])
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
data_args, training_args = parser.parse_args_into_dataclasses()
|
75 |
+
|
76 |
+
# Setup logging
|
77 |
+
logging.basicConfig(
|
78 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
79 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
80 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
81 |
+
)
|
82 |
+
|
83 |
+
log_level = training_args.get_process_log_level()
|
84 |
+
logger.setLevel(log_level)
|
85 |
+
transformers.utils.logging.set_verbosity(log_level)
|
86 |
+
transformers.utils.logging.enable_default_handler()
|
87 |
+
transformers.utils.logging.enable_explicit_format()
|
88 |
+
|
89 |
+
# Log on each process the small summary:
|
90 |
+
logger.warning(
|
91 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
92 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
93 |
+
)
|
94 |
+
|
95 |
+
dataset = datasets.load_dataset("beans")
|
96 |
+
|
97 |
+
data_args.train_val_split = (
|
98 |
+
None if "validation" in dataset.keys() else data_args.train_val_split
|
99 |
+
)
|
100 |
+
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
101 |
+
split = dataset["train"].train_test_split(data_args.train_val_split)
|
102 |
+
dataset["train"] = split["train"]
|
103 |
+
dataset["validation"] = split["test"]
|
104 |
+
|
105 |
+
feature_extractor = ConvNextFeatureExtractor(
|
106 |
+
do_resize=False, do_normalize=False, image_mean=[0.45], image_std=[0.22]
|
107 |
+
)
|
108 |
+
|
109 |
+
config = ResNetConfig(
|
110 |
+
num_channels=1,
|
111 |
+
layer_type="basic",
|
112 |
+
depths=[2, 2],
|
113 |
+
hidden_sizes=[32, 64],
|
114 |
+
num_labels=3,
|
115 |
+
)
|
116 |
+
|
117 |
+
model = ResNetForImageClassification(config)
|
118 |
+
|
119 |
+
# Define torchvision transforms to be applied to each image.
|
120 |
+
normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
121 |
+
_transforms = Compose([ToTensor(), normalize])
|
122 |
+
|
123 |
+
def transforms(example_batch):
|
124 |
+
"""Apply _train_transforms across a batch."""
|
125 |
+
# black and white
|
126 |
+
example_batch["pixel_values"] = [_transforms(pil_img.convert("L")) for pil_img in example_batch["image"]]
|
127 |
+
return example_batch
|
128 |
+
|
129 |
+
# Load the accuracy metric from the datasets package
|
130 |
+
metric = datasets.load_metric("accuracy")
|
131 |
+
|
132 |
+
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
133 |
+
# predictions and label_ids field) and has to return a dictionary string to float.
|
134 |
+
def compute_metrics(p):
|
135 |
+
"""Computes accuracy on a batch of predictions"""
|
136 |
+
|
137 |
+
accuracy = metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
|
138 |
+
return accuracy
|
139 |
+
|
140 |
+
if training_args.do_train:
|
141 |
+
if data_args.max_train_samples is not None:
|
142 |
+
dataset["train"] = (
|
143 |
+
dataset["train"]
|
144 |
+
.shuffle(seed=training_args.seed)
|
145 |
+
.select(range(data_args.max_train_samples))
|
146 |
+
)
|
147 |
+
|
148 |
+
logger.info("Setting train transform")
|
149 |
+
# Set the training transforms
|
150 |
+
dataset["train"].set_transform(transforms)
|
151 |
+
|
152 |
+
if training_args.do_eval:
|
153 |
+
if "validation" not in dataset:
|
154 |
+
raise ValueError("--do_eval requires a validation dataset")
|
155 |
+
if data_args.max_eval_samples is not None:
|
156 |
+
dataset["validation"] = (
|
157 |
+
dataset["validation"]
|
158 |
+
.shuffle(seed=training_args.seed)
|
159 |
+
.select(range(data_args.max_eval_samples))
|
160 |
+
)
|
161 |
+
|
162 |
+
logger.info("Setting validation transform")
|
163 |
+
# Set the validation transforms
|
164 |
+
dataset["validation"].set_transform(transforms)
|
165 |
+
|
166 |
+
from transformers import trainer_utils
|
167 |
+
|
168 |
+
print(dataset)
|
169 |
+
|
170 |
+
training_args = transformers.TrainingArguments(
|
171 |
+
output_dir=training_args.output_dir,
|
172 |
+
do_eval=training_args.do_eval,
|
173 |
+
do_train=training_args.do_train,
|
174 |
+
logging_steps = 500,
|
175 |
+
eval_steps = 500,
|
176 |
+
save_steps= 500,
|
177 |
+
remove_unused_columns = False, # we need to pass the `label` and `image`
|
178 |
+
per_device_train_batch_size = 32,
|
179 |
+
save_total_limit = 2,
|
180 |
+
evaluation_strategy = "steps",
|
181 |
+
num_train_epochs = 6,
|
182 |
+
)
|
183 |
+
|
184 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
185 |
+
|
186 |
+
trainer = Trainer(
|
187 |
+
model=model,
|
188 |
+
args=training_args,
|
189 |
+
train_dataset=dataset["train"] if training_args.do_train else None,
|
190 |
+
eval_dataset=dataset["validation"] if training_args.do_eval else None,
|
191 |
+
compute_metrics=compute_metrics,
|
192 |
+
tokenizer=feature_extractor,
|
193 |
+
data_collator=collate_fn,
|
194 |
+
)
|
195 |
+
|
196 |
+
# Training
|
197 |
+
if training_args.do_train:
|
198 |
+
train_result = trainer.train()
|
199 |
+
trainer.save_model()
|
200 |
+
trainer.log_metrics("train", train_result.metrics)
|
201 |
+
trainer.save_metrics("train", train_result.metrics)
|
202 |
+
trainer.save_state()
|
203 |
+
|
204 |
+
# Evaluation
|
205 |
+
if training_args.do_eval:
|
206 |
+
metrics = trainer.evaluate()
|
207 |
+
trainer.log_metrics("eval", metrics)
|
208 |
+
trainer.save_metrics("eval", metrics)
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
main()
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"train_loss": 0.9793546272046638,
|
4 |
+
"train_runtime": 46.4278,
|
5 |
+
"train_samples_per_second": 133.627,
|
6 |
+
"train_steps_per_second": 4.265
|
7 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 6.0,
|
5 |
+
"global_step": 198,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 6.0,
|
12 |
+
"step": 198,
|
13 |
+
"total_flos": 1708758414000000.0,
|
14 |
+
"train_loss": 0.9793546272046638,
|
15 |
+
"train_runtime": 46.4278,
|
16 |
+
"train_samples_per_second": 133.627,
|
17 |
+
"train_steps_per_second": 4.265
|
18 |
+
}
|
19 |
+
],
|
20 |
+
"max_steps": 198,
|
21 |
+
"num_train_epochs": 6,
|
22 |
+
"total_flos": 1708758414000000.0,
|
23 |
+
"trial_name": null,
|
24 |
+
"trial_params": null
|
25 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7263e66f73eef0346825fd1736d362a11c375b16f528efa9b6d6c32e654631d4
|
3 |
+
size 3247
|