File size: 9,402 Bytes
2518c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from typing import Callable
from timm.models.layers import Mlp
from fairseq_signals_backbone.models.wav2vec2.wav2vec2_cmsc import Wav2Vec2CMSCModel, Wav2Vec2CMSCConfig
from lightning import LightningModule
from transformers import PreTrainedModel
from .configuration_MELP_Encoder import MELPEncoderConfig


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm (with cast back to input dtype)."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(orig_type)
    

class AttentionalPooler(nn.Module):
    def __init__(
            self,
            d_model: int,
            context_dim: int,
            n_head: int = 8,
            n_queries: int = 256,
            norm_layer: Callable = LayerNorm,
    ):
        super().__init__()
        self.query = nn.Parameter(torch.randn(n_queries, d_model))
        self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim, batch_first=True)
        self.ln_q = norm_layer(d_model)
        self.ln_k = norm_layer(context_dim)

    def forward(self, x: torch.Tensor):
        N = x.shape[0]
        x = self.ln_k(x)
        q = self.ln_q(self.query)
        out = self.attn(q.unsqueeze(0).expand(N, -1, -1), x, x, need_weights=False)[0]
        return out


def off_diagonal(x):
    # return a flattened view of the off-diagonal elements of a square matrix
    n, m = x.shape
    assert n == m
    return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()


class ECGFMModel(LightningModule):
    def __init__(self, 
                 model_size: str = "small", # small by default
                 shared_emb_dim: int = 256,
                 embed_dim_caption: int = 768,
                 use_attentional_pool_contrast: bool = False,
                 use_attentional_pool_caption: bool = False,
                 n_queries_contrast: int = 10,
                 n_queries_caption: int = 128,
                 attn_pooler_heads: int = 8,
                 norm_layer: nn.Module = nn.LayerNorm,
                 proj: str = "linear",
                 drop: float = 0.,
                 proj_bias: bool = False,
                 num_leads: int = 12,
                 softmax_temperature: float = 0.1,
                 lambd: float = 0.0051,
                 *args,
                 **kwargs):
        
        """" Implementation of ECG-FM model.
        Using the Wave2Vec2 model as the ECG encoder: CNN + Transformer
        
        """
        super().__init__()
        self.save_hyperparameters()
        self.shared_emb_dim = shared_emb_dim
        self.num_leads = num_leads
        self.temperature = softmax_temperature

        if model_size == "small":
            self.encoder_embed_dim = 768
            self.encoder_attention_heads = 12
            self.encoder_layers = 8
            self.encoder_ffn_embed_dim = 3072
        elif model_size == "base":
            self.encoder_embed_dim = 768
            self.encoder_attention_heads = 12
            self.encoder_layers = 12
            self.encoder_ffn_embed_dim = 3072
        elif model_size == "large":
            self.encoder_embed_dim = 1024
            self.encoder_attention_heads = 16
            self.encoder_layers = 24
            self.encoder_ffn_embed_dim = 4096
        else:
            raise ValueError(f"Unknown model size: {model_size}")
        print("Using ECG encoder with the following configuration:")
        print(f"encoder_embed_dim: {self.encoder_embed_dim}")
        print(f"encoder_attention_heads: {self.encoder_attention_heads}")
        print(f"encoder_layers: {self.encoder_layers}")
        print(f"encoder_ffn_embed_dim: {self.encoder_ffn_embed_dim}")
        
        self.init_ecg_encoder()

        self.embed_dim_caption = embed_dim_caption
        self.use_attentional_pool_contrast = use_attentional_pool_contrast
        self.use_attentional_pool_caption = use_attentional_pool_caption
    
        head_layers = OrderedDict()
        prev_chs = self.ecg_encoder.cfg.encoder_embed_dim
        if use_attentional_pool_contrast:
            scale = prev_chs ** -0.5
            self.attn_pool_contrast = AttentionalPooler(
                d_model=shared_emb_dim, 
                context_dim=prev_chs, 
                n_head=attn_pooler_heads, 
                n_queries=n_queries_contrast)
            self.ln_contrast = norm_layer(shared_emb_dim)
            self.proj_contrast = nn.Parameter(scale * torch.randn(shared_emb_dim, shared_emb_dim))
        else:
            assert proj, 'projection layer needed if not using attentional pooling.'
            # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
            if proj == 'linear':
                head_layers['drop'] = nn.Dropout(drop)
                head_layers['proj'] = nn.Linear(prev_chs, shared_emb_dim, bias=proj_bias)
            elif proj == 'mlp':
                head_layers['mlp'] = Mlp(prev_chs, 2 * shared_emb_dim, shared_emb_dim, drop=(drop, 0), bias=(True, proj_bias))

        self.head = nn.Sequential(head_layers)

        if use_attentional_pool_caption:
            self.attn_pool_caption = AttentionalPooler(
                d_model=embed_dim_caption, context_dim=prev_chs, n_head=attn_pooler_heads, n_queries=n_queries_caption)
            self.ln_caption = norm_layer(embed_dim_caption)
        
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.bn = nn.BatchNorm1d(768, affine=False)
        self.lambd = lambd

    def init_ecg_encoder(self):
        # Here we define Wav2Vec2CMSC model as the ECG encoder
        cfg = Wav2Vec2CMSCConfig(
            apply_mask = True,
            mask_prob = 0.65,
            quantize_targets = True,
            final_dim = 256,
            dropout_input = 0.1,
            dropout_features = 0.1,
            feature_grad_mult = 0.1,
            encoder_embed_dim = self.encoder_embed_dim,
            encoder_attention_heads = self.encoder_attention_heads,
            in_d = 12,
            encoder_layers = self.encoder_layers,
            encoder_ffn_embed_dim = self.encoder_ffn_embed_dim
        )
        self.ecg_encoder = Wav2Vec2CMSCModel(cfg)

    def _global_pool(self, x):
        return torch.mean(x, dim=1)
        
    @torch.no_grad()
    # only used for finetune ...
    def ext_ecg_emb(self, ecg, normalize=False):
        assert ecg.dim() == 3, "Input tensor must be 3D"

        ecg_out = self.ecg_encoder(source=ecg, mask=False, features_only=True)
        features = ecg_out["x"]

        if self.use_attentional_pool_contrast:
            pooled = self.attn_pool_contrast(features)
            pooled = self.ln_contrast(pooled)
            pooled = torch.mean(pooled, dim=1)
        else:
            pooled = self._global_pool(features)

        if normalize:
            pooled = F.normalize(pooled, p=2, dim=-1)
        
        return pooled

    def _encode_ecg(self, ecg):
        assert ecg.dim() == 3, "Input tensor must be 3D"
        ecg_out = self.ecg_encoder(source=ecg, mask=False, features_only=True)
        # features = self.ecg_encoder.get_features(net_output=ecg_out, aggregate=False)
        # results after CNN-Transformer
        features = ecg_out["x"]

        if self.use_attentional_pool_contrast:
            # hierarchical pooling
            pooled = self.attn_pool_contrast(features)
            pooled = self.ln_contrast(pooled)
            pooled = pooled @ self.proj_contrast.unsqueeze(0)
            pooled_beat = pooled.clone()
            pooled = torch.mean(pooled, dim=1)
        else:
            pooled = self._global_pool(features)
            pooled = self.head(features)

        tokens = None
        if self.use_attentional_pool_caption:
            tokens = self.attn_pool_caption(features)
            tokens = self.ln_caption(tokens)
        else:
            tokens = None

        return pooled, pooled_beat, tokens
    
    def encode_ecg(self, ecg):
        ecg_latent, _, _ = self._encode_ecg(ecg)
        return ecg_latent


class MELPEncoderModel(PreTrainedModel):
    config_class = MELPEncoderConfig

    def __init__(self, config: MELPEncoderConfig):
        super().__init__(config)

        self.ecg_encoder = ECGFMModel(
            model_size=config.model_size,
            shared_emb_dim=config.shared_emb_dim,
            embed_dim_caption=config.embed_dim_caption,
            use_attentional_pool_contrast=config.use_attentional_pool_contrast,
            use_attentional_pool_caption=config.use_attentional_pool_caption,
            n_queries_contrast=config.n_queries_contrast,
            n_queries_caption=config.n_queries_caption,
            attn_pooler_heads=config.attn_pooler_heads,
            proj=config.proj,
            drop=config.drop,
            proj_bias=config.proj_bias,
            num_leads=config.num_leads,
        )
    
    def forward(self, tensor: torch.Tensor) -> torch.Tensor:
        proj_ecg_emb, ecg_beat_emb, ecg_token_emb = self.ecg_encoder._encode_ecg(tensor)

        return {
            "proj_ecg_emb": proj_ecg_emb,
            "ecg_beat_emb": ecg_beat_emb,
            "ecg_token_emb": ecg_token_emb
        }