tracevla_7b / README.md
rzheng12's picture
Update README.md
23ac599 verified
---
license: mit
license_link: https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/LICENSE
language:
- multilingual
pipeline_tag: text-generation
tags:
- nlp
- code
- vision
widget:
- messages:
- role: user
content: <|image_1|>\nWhat action should the robot take to {lang}?
---
## TraceVLA-7B
``TraceVLA-7B`` model is a vision-language-action model obtained by finetuning the base [OpenVLA](https://huggingface.co/openvla/openvla-7b) model with [visual trace prompting technique](https://arxiv.org/abs/2412.10345).
### Results on SimplerEnv Fractal + SimplerEnv:
#### Fractal:
| Policy/Settings | Pick up Coke | Move near | Open/Close Drawer | Put in Drawer | Average Success Rate |
|:------:|:------------:|:---------:|:------------:|:-----------:|:-------:|
| (Visual Matching) OpenVLA-7B | 23.7% | **65.0%** | 57.4% | 0.% | 36.5% |
| (Visual Matching) TraceVLA-7B | **45.0%** | 63.8% | **63.1%** | **11.1.%** | 45.8% |
| (Variant Aggregation) OpenVLA-7B | 61.3% | 55.8% | 24.9% | 1.0% | 35.8% |
| (Variant Aggregation) TraceVLA-7B | **64.3%** | **60.6%** | **61.6%** | **12.5.%** | **49.8%** |
#### Bridge:
| Policy/Settings | Put Spoon | Put Carrot | Stack Block | Put Eggplant | Average Success Rate |
|:------:|:------------:|:---------:|:------------:|:-----------:|:-------:|
| OpenVLA-7B | 8.3% | 8.3% | 4.2% | 45.8% | 16.7% |
| TraceVLA-7B | **12.5%** | **16.6%** | **16.6%** | **65.0%** | **27.7%** |
### Sample Inference Code
Here is the sample inference code of TraceVLA-7B model.
```
model_path = "furonghuang-lab/tracevla_7b"
# Load Processor & VLA
processor = AutoProcessor.from_pretrained(
model_path,
trust_remote_code=True,
num_crops=1,
)
vla = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
_attn_implementation='flash_attention_2',
use_cache=True
).to(device='cuda')
# Load Visual Trace Processor
# cotracker_model_path corresponds to the path to your downloaded scaled_offline.pth checkpoint
from prismatic.eval.trace_processor import TraceProcessor
trace_processor = TraceProcessor(cotracker_model_path)
# Grab image input & format prompt
# In case where the visual trace returned by Co-Tracker is not valid, we use the default openvla prompt.
openvla_prompt_template = "In: What action should the robot take to {task_description}?\nOut:"
tracevla_prompt_template = "In: You are given two images: one with the original robot observation, and another one marked with historical traces of the robot end effector and moving objects, separated by a special separator token. What action should the robot take to {task_description}?\nOut:"
image: Image.Image = get_from_camera(...)
image_overlaid, has_trace = trace_processors.process_image(image)
if not has_trace:
prompt = openvla_prompt_template.format(task_description=task_description)
inputs = processor(prompt, [image, image]).to(device='cuda', dtype=torch.bfloat16)
else:
prompt = tracevla_prompt_template.format(task_description=task_description)
inputs = processor(prompt, [image, image_overlaid]).to(device='cuda', dtype=torch.bfloat16)
### Predict the action
with torch.inference_mode():
action = vla.predict_action(**inputs)
# Execute the action
robot.act(action, ...)
```
For more examples, including scripts for finetuning TraceVLA models on your own robot demonstration datasets, check out our [repository](https://github.com/FrankZheng2022/tracevla).
### Citation
If you find our code or models useful in your work, please cite [our paper](https://arxiv.org/abs/2412.10345):
```bibtex
@misc{zheng2024tracevlavisualtraceprompting,
title={TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies},
author={Ruijie Zheng and Yongyuan Liang and Shuaiyi Huang and Jianfeng Gao and Hal Daumé III and Andrey Kolobov and Furong Huang and Jianwei Yang},
year={2024},
eprint={2412.10345},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2412.10345},
}
```