File size: 2,144 Bytes
4553631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- fsicoli/cv18-fleurs
metrics:
- wer
model-index:
- name: whisper-medium-pt-cv18-fleurs2-lr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fsicoli/cv18-fleurs default
type: fsicoli/cv18-fleurs
args: default
metrics:
- name: Wer
type: wer
value: 0.0929
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-pt-cv18-fleurs2-lr
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv18-fleurs default dataset for Portuguese.
It achieves the following results on the evaluation set:
- Loss: 0.2163
- Wer: 0.0929
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.25e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- training_steps: 25000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:-----:|:---------------:|:------:|
| 0.0876 | 2.3004 | 5000 | 0.1662 | 0.1059 |
| 0.0371 | 4.6009 | 10000 | 0.1839 | 0.0999 |
| 0.0246 | 6.9013 | 15000 | 0.2027 | 0.0997 |
| 0.0072 | 9.2017 | 20000 | 0.2152 | 0.0967 |
| 0.0074 | 11.5022 | 25000 | 0.2163 | 0.0929 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1
- Datasets 2.21.0
- Tokenizers 0.19.1
|