|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- cognitivecomputations/dolphin-2.8-mistral-7b-v02 |
|
- Nondzu/Mistral-7B-Instruct-v0.2-code-ft |
|
base_model: |
|
- cognitivecomputations/dolphin-2.8-mistral-7b-v02 |
|
- Nondzu/Mistral-7B-Instruct-v0.2-code-ft |
|
--- |
|
|
|
# dolphin-2.8-mistral-11b-v02-code-ft |
|
|
|
dolphin-2.8-mistral-11b-v02-code-ft is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02) |
|
* [Nondzu/Mistral-7B-Instruct-v0.2-code-ft](https://huggingface.co/Nondzu/Mistral-7B-Instruct-v0.2-code-ft) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 |
|
layer_range: [0, 8] |
|
- sources: |
|
- model: Nondzu/Mistral-7B-Instruct-v0.2-code-ft |
|
layer_range: [4, 14] |
|
- sources: |
|
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 |
|
layer_range: [10, 20] |
|
- sources: |
|
- model: Nondzu/Mistral-7B-Instruct-v0.2-code-ft |
|
layer_range: [16, 26] |
|
- sources: |
|
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 |
|
layer_range: [22, 32] |
|
merge_method: passthrough |
|
base_model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "frost19k/dolphin-2.8-mistral-11b-v02-code-ft" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |