frncscp commited on
Commit
e2a0ba1
·
1 Parent(s): 7e499e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -5
README.md CHANGED
@@ -5,6 +5,10 @@ tags:
5
  model-index:
6
  - name: frncscp/patacoptimus-prime
7
  results: []
 
 
 
 
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
@@ -12,20 +16,20 @@ probably proofread and complete it, then remove this comment. -->
12
 
13
  # frncscp/patacoptimus-prime
14
 
15
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
  - Train Loss: 0.0043
18
  - Validation Loss: 0.0086
19
  - Train Accuracy: 0.9977
20
- - Epoch: 1
21
 
22
  ## Model description
23
 
24
- More information needed
25
 
26
  ## Intended uses & limitations
27
 
28
- More information needed
29
 
30
  ## Training and evaluation data
31
 
@@ -52,4 +56,4 @@ The following hyperparameters were used during training:
52
  - Transformers 4.28.1
53
  - TensorFlow 2.12.0
54
  - Datasets 2.12.0
55
- - Tokenizers 0.13.3
 
5
  model-index:
6
  - name: frncscp/patacoptimus-prime
7
  results: []
8
+ datasets:
9
+ - frncscp/patacon-730
10
+ metrics:
11
+ - accuracy
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
 
16
 
17
  # frncscp/patacoptimus-prime
18
 
19
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on [frncscp/patacon-730](https://huggingface.co/datasets/frncscp/patacon-730).
20
  It achieves the following results on the evaluation set:
21
  - Train Loss: 0.0043
22
  - Validation Loss: 0.0086
23
  - Train Accuracy: 0.9977
24
+ - Epoch: 14
25
 
26
  ## Model description
27
 
28
+ One-Class Patacognition Transformer
29
 
30
  ## Intended uses & limitations
31
 
32
+ It was designed for One-Class Patacón Classification
33
 
34
  ## Training and evaluation data
35
 
 
56
  - Transformers 4.28.1
57
  - TensorFlow 2.12.0
58
  - Datasets 2.12.0
59
+ - Tokenizers 0.13.3