friedrice231's picture
Model save
5062215 verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9546181527389045

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1631
  • Accuracy: 0.9546

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4463 1.0 51 0.3232 0.9166
0.2061 2.0 102 0.1659 0.9398
0.1795 3.0 153 0.2043 0.9192
0.1356 4.0 204 0.1204 0.9542
0.1193 5.0 255 0.1357 0.9454
0.1054 6.0 306 0.1197 0.9516
0.0974 7.0 357 0.1081 0.9586
0.092 8.0 408 0.1220 0.9532
0.0601 9.0 459 0.1587 0.9466
0.0639 10.0 510 0.1676 0.9440
0.072 11.0 561 0.1058 0.9618
0.0606 12.0 612 0.1061 0.9634
0.0572 13.0 663 0.1375 0.9552
0.0563 14.0 714 0.1377 0.9548
0.0413 15.0 765 0.1823 0.9470
0.0361 16.0 816 0.0992 0.9674
0.0471 17.0 867 0.1508 0.9550
0.04 18.0 918 0.1700 0.9506
0.0417 19.0 969 0.1760 0.9454
0.0238 20.0 1020 0.1311 0.9600
0.0319 21.0 1071 0.1502 0.9562
0.0328 22.0 1122 0.1843 0.9484
0.0363 23.0 1173 0.1473 0.9558
0.0385 24.0 1224 0.1625 0.9516
0.0198 25.0 1275 0.1749 0.9490
0.0349 26.0 1326 0.1586 0.9528
0.0337 27.0 1377 0.1343 0.9614
0.0261 28.0 1428 0.1624 0.9542
0.0253 29.0 1479 0.1727 0.9532
0.0271 30.0 1530 0.1631 0.9546

Framework versions

  • Transformers 4.37.2
  • Pytorch 1.13.1
  • Datasets 2.16.1
  • Tokenizers 0.15.1