File size: 3,002 Bytes
9465ccf 6eab4d4 9465ccf d5ff321 9465ccf 6eab4d4 9465ccf 6394933 e336b22 9465ccf f504d80 9465ccf f504d80 dac3bf6 f504d80 9579804 dac3bf6 f504d80 9579804 dac3bf6 f504d80 9579804 dac3bf6 9465ccf d5ff321 9465ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.1
datasets:
- generator
model-index:
- name: Mistral-7B-v0.1_Emotion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-v0.1_Emotion
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset.
Dataset: [dair-ai/emotion](https://huggingface.co/datasets/dair-ai/emotion)
## Model description
Article: https://ai.plainenglish.io/fine-tuning-the-mistral-7b-instruct-v0-1-model-with-the-emotion-dataset-c84c50b553dc
Fine tunning: https://github.com/frank-morales2020/MLxDL/blob/main/FineTuning_Mistral_7b_hfdeployment_dataset_Emotion.ipynb
Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FineTunning_Testing_For_EmotionQADataset.ipynb
## Intended uses & limitations
More information needed
## Training and evaluation data
Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FineTunning_Testing_For_EmotionQADataset.ipynb
*************
The following hyperparameters were used during training:
learning_rate: 0.0002 train_batch_size: 3 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 6 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: constant lr_scheduler_warmup_ratio: 0.03
num_epochs: 1
Accuracy (Eval dataset and predict) for a sample of 2000: 59.45%
*************
The following hyperparameters were used during training:
learning_rate: 0.0002 train_batch_size: 3 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 6 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: constant lr_scheduler_warmup_ratio: 0.03
num_epochs: 25
Accuracy (Eval dataset and predict) for a sample of 2000: 79.95%
*************
The following hyperparameters were used during training:
learning_rate: 0.0002 train_batch_size: 3 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 6 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: constant lr_scheduler_warmup_ratio: 0.03
num_epochs: 40
Accuracy (Eval dataset and predict) for a sample of 2000: 80.70%
*************
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 40
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |