File size: 5,418 Bytes
5b6c6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# _base_ = ["../_base_/schedules/schedule_1x.py", "../_base_/default_runtime.py"]
# model settings
data_preprocessor = dict(
    type="DetDataPreprocessor",
    mean=[0, 0, 0],
    std=[255.0, 255.0, 255.0],
    bgr_to_rgb=True,
    pad_size_divisor=32,
)
model = dict(
    type="YOLOV3",
    data_preprocessor=data_preprocessor,
    backbone=dict(
        type="Darknet",
        depth=53,
        out_indices=(3, 4, 5),
        init_cfg=dict(type="Pretrained", checkpoint="open-mmlab://darknet53"),
    ),
    neck=dict(
        type="YOLOV3Neck",
        num_scales=3,
        in_channels=[1024, 512, 256],
        out_channels=[512, 256, 128],
    ),
    bbox_head=dict(
        type="YOLOV3Head",
        num_classes=1,
        in_channels=[512, 256, 128],
        out_channels=[1024, 512, 256],
        anchor_generator=dict(
            type="YOLOAnchorGenerator",
            base_sizes=[
                [(116, 90), (156, 198), (373, 326)],
                [(30, 61), (62, 45), (59, 119)],
                [(10, 13), (16, 30), (33, 23)],
            ],
            strides=[32, 16, 8],
        ),
        bbox_coder=dict(type="YOLOBBoxCoder"),
        featmap_strides=[32, 16, 8],
        loss_cls=dict(
            type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0, reduction="sum"
        ),
        loss_conf=dict(
            type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0, reduction="sum"
        ),
        loss_xy=dict(
            type="CrossEntropyLoss", use_sigmoid=True, loss_weight=2.0, reduction="sum"
        ),
        loss_wh=dict(type="MSELoss", loss_weight=2.0, reduction="sum"),
    ),
    # training and testing settings
    train_cfg=dict(
        assigner=dict(
            type="GridAssigner", pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0
        )
    ),
    test_cfg=dict(
        nms_pre=1000,
        min_bbox_size=0,
        score_thr=0.05,
        conf_thr=0.005,
        nms=dict(type="nms", iou_threshold=0.45),
        max_per_img=100,
    ),
)
# dataset settings
dataset_type = "CocoDataset"
data_root = "data/coco/"

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection/coco/'

# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection/',
#         'data/': 's3://openmmlab/datasets/detection/'
#     }))
backend_args = None

train_pipeline = [
    dict(type="LoadImageFromFile", backend_args=backend_args),
    dict(type="LoadAnnotations", with_bbox=True),
    dict(
        type="Expand",
        mean=data_preprocessor["mean"],
        to_rgb=data_preprocessor["bgr_to_rgb"],
        ratio_range=(1, 2),
    ),
    dict(
        type="MinIoURandomCrop",
        min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
        min_crop_size=0.3,
    ),
    dict(type="RandomResize", scale=[(320, 320), (608, 608)], keep_ratio=True),
    dict(type="RandomFlip", prob=0.5),
    dict(type="PhotoMetricDistortion"),
    dict(type="PackDetInputs"),
]
test_pipeline = [
    dict(type="LoadImageFromFile", backend_args=backend_args),
    dict(type="Resize", scale=(608, 608), keep_ratio=True),
    dict(type="LoadAnnotations", with_bbox=True),
    dict(
        type="PackDetInputs",
        meta_keys=("img_id", "img_path", "ori_shape", "img_shape", "scale_factor"),
    ),
]

train_dataloader = dict(
    batch_size=8,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type="DefaultSampler", shuffle=True),
    batch_sampler=dict(type="AspectRatioBatchSampler"),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file="annotations/instances_train2017.json",
        data_prefix=dict(img="train2017/"),
        filter_cfg=dict(filter_empty_gt=True, min_size=32),
        pipeline=train_pipeline,
        backend_args=backend_args,
    ),
)
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type="DefaultSampler", shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file="annotations/instances_val2017.json",
        data_prefix=dict(img="val2017/"),
        test_mode=True,
        pipeline=test_pipeline,
        backend_args=backend_args,
    ),
)
test_dataloader = val_dataloader

val_evaluator = dict(
    type="CocoMetric",
    ann_file=data_root + "annotations/instances_val2017.json",
    metric="bbox",
    backend_args=backend_args,
)
test_evaluator = val_evaluator

train_cfg = dict(max_epochs=273, val_interval=7)

# optimizer
optim_wrapper = dict(
    type="OptimWrapper",
    optimizer=dict(type="SGD", lr=0.001, momentum=0.9, weight_decay=0.0005),
    clip_grad=dict(max_norm=35, norm_type=2),
)

# learning policy
param_scheduler = [
    dict(type="LinearLR", start_factor=0.1, by_epoch=False, begin=0, end=2000),
    dict(type="MultiStepLR", by_epoch=True, milestones=[218, 246], gamma=0.1),
]

default_hooks = dict(checkpoint=dict(type="CheckpointHook", interval=7))

# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (8 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)