File size: 12,088 Bytes
401fa20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import datetime
import json
import logging
import os.path as osp
import time
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from dataset import MetaLoader, create_dataset, create_loader, create_sampler
from models.vindlu import VindLU
from tasks.retrieval_utils import evaluation_wrapper
from tasks.shared_utils import get_media_types, setup_model
from utils.basic_utils import (MetricLogger, SmoothedValue,
remove_files_if_exist, setup_seed)
from utils.config_utils import setup_main
from utils.distributed import get_rank, get_world_size, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
logger = logging.getLogger(__name__)
class PretrainTrainer(object):
"""trainer for pretraining."""
def __init__(self, config):
super(PretrainTrainer, self).__init__()
self.config = config
self.is_pretrain = config.mode == "pt"
self.setup()
self.has_decoder = False
if config.mode in ["ret", "pt"]:
self.evaluation_fn = evaluation_wrapper
self.model_cls = VindLU
elif config.mode == "vqa":
raise NotImplementedError("not implemented")
else:
raise NotImplementedError("not implemented")
self.build_dataloaders()
self.build_model()
def setup(self):
"""setup for train."""
config = self.config
if is_main_process() and config.wandb.enable:
self.wandb_run = setup_wandb(config)
else:
self.wandb_run = None
setup_seed(config.seed + get_rank())
self.device = torch.device(config.device)
@torch.no_grad()
def evaluate(self, epoch=0):
"""evaluate the model.
Args:
model (nn.Module): The model to evaluate.
loader (DataLoader): dataloader.
tokenizer (None): tokenizer.
prefix (str): The str prepended to the keys of return dict.
Returns: dict. The value is the corresponding evaluation results for the key.
"""
eval_res = {}
for test_name, test_loader in self.test_name2loaders.items():
if test_name not in self.config.test_types:
logger.info(
f"Skip eval {test_name} split. All test_types {self.config.test_types}"
)
continue
with torch.cuda.amp.autocast(enabled=self.config.fp16):
res = self.evaluation_fn(
self.model_without_ddp,
test_loader,
self.tokenizer,
self.device,
self.config,
test_name,
)
eval_res.update(res)
df = pd.DataFrame(eval_res)
logger.info(f"Epoch {epoch}")
logger.info(f"\n{df.transpose().to_string(max_cols=30)}")
return eval_res
def build_model(self):
"""TODO: Docstring for build_model.
Returns: TODO
"""
(
self.model,
self.model_without_ddp,
self.optimizer,
self.scheduler,
self.scaler,
self.tokenizer,
self.start_epoch,
self.global_step,
) = setup_model(
self.config,
model_cls=self.model_cls,
has_decoder=self.has_decoder,
pretrain=self.is_pretrain,
find_unused_parameters=True,
)
def build_dataloaders(self):
config = self.config
mode = config.mode
# train datasets, create a list of data loaders
logger.info(f"Creating dataset for {mode}")
train_datasets = create_dataset(f"{mode}_train", config)
media_types = get_media_types(train_datasets)
if config.distributed:
num_tasks = get_world_size()
global_rank = get_rank()
samplers = create_sampler(
train_datasets, [True] * len(media_types), num_tasks, global_rank
)
else:
samplers = [None] * len(media_types)
train_loaders = create_loader(
train_datasets,
samplers,
batch_size=[config.inputs.batch_size[k] for k in media_types],
num_workers=[config.num_workers] * len(media_types),
is_trains=[True] * len(media_types),
collate_fns=[None] * len(media_types),
) # [0]
# test datasets, a mapping from dataset name to data loader
test_datasets, test_dataset_names = create_dataset(f"{mode}_eval", config)
test_loaders = create_loader(
test_datasets,
[None] * len(test_datasets),
batch_size=[config.inputs.batch_size_test[d.media_type] for d in test_datasets],
num_workers=[config.num_workers] * len(test_datasets),
is_trains=[False] * len(test_datasets),
collate_fns=[None] * len(test_datasets),
)
test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
self.train_loaders = train_loaders
self.test_name2loaders = test_name2loaders
self.media_types = media_types
num_steps_per_epoch = sum(len(d) for d in self.train_loaders)
# update config
config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
config.scheduler.num_warmup_steps = (
num_steps_per_epoch * config.scheduler.warmup_epochs
)
self.config = config
def train(self):
"""train the model."""
config = self.config
# set cudnn.benchmark=True only when input size is fixed
# https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
cudnn.benchmark = len(self.media_types) == 1
if is_main_process() and config.wandb.enable:
wandb.watch(self.model)
best = 0
best_epoch = 0
logger.info("Start training")
start_time = time.time()
global_step = self.global_step
for epoch in range(self.start_epoch, config.scheduler.epochs):
# train one epoch
global_step = self.train_one_epoch(epoch, global_step)
# evaluation.
eval_res = self.evaluate(epoch)
if is_main_process():
# log to wandb
if config.wandb.enable:
for p, v in eval_res.items():
log_dict_to_wandb(v, step=global_step, prefix=p)
if config.stop_key is not None and config.stop_key in eval_res:
if config.model.multimodal.enable:
cur_r_mean = eval_res[config.stop_key]["r_mean"]
else:
cur_r_mean = eval_res[config.stop_key.replace("/", "_emb/")]["r_mean"]
else: # None
cur_r_mean = best + 1 # save the last as the best
with open(osp.join(config.output_dir, "eval_res_latest.json"), "w") as f:
json.dump(eval_res, f)
# eval_res.to_json(osp.join(config.output_dir, "eval_res_latest.json"))
save_obj = {
"model": self.model_without_ddp.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
"scaler": self.scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_obj, osp.join(config.output_dir, f"ckpt_{epoch:02d}.pth"))
if cur_r_mean > best:
torch.save(save_obj, osp.join(config.output_dir, "ckpt_best.pth"))
eval_file = "eval_res_best.json"
# eval_res.to_json(osp.join(config.output_dir, eval_file))
with open(osp.join(config.output_dir, eval_file), "w") as f:
json.dump(eval_res, f)
best = cur_r_mean
best_epoch = epoch
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Training time {total_time_str}")
logger.info(f"best epoch {best_epoch} [config.stop_key {config.stop_key}]")
logger.info(f"Checkpoints and Logs saved at {config.output_dir}")
if is_main_process() and config.wandb.enable:
self.wandb_run.finish()
def train_one_epoch(self, epoch, global_step):
config = self.config
self.model.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window=100, fmt="{value:.6f}"))
metric_logger.add_meter("temperature", SmoothedValue(window=100, fmt="{value:.4f}"))
loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
media_types = get_media_types(self.train_loaders)
for name in loss_names:
for m in media_types:
metric_logger.add_meter(
f"{m}-{name}", SmoothedValue(window=100, fmt="{value:.4f}")
)
header = f"Train Epoch: [{epoch}]"
log_freq = config.log_freq
if config.distributed:
for d in self.train_loaders:
d.sampler.set_epoch(epoch)
train_loader = MetaLoader(name2loader=dict(list(zip(media_types, self.train_loaders))))
model_without_ddp = self.model.module if config.distributed else self.model
iterator = metric_logger.log_every(train_loader, log_freq, header)
for i, (media_type, (image, text, idx)) in enumerate(iterator):
image = image.to(self.device, non_blocking=True)
idx = idx.to(self.device, non_blocking=True)
text_input = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=config.inputs.max_txt_l[media_type],
return_tensors="pt",
).to(self.device)
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
loss_dict = self.model(image, text_input, idx=idx)
loss = sum(loss_dict.values())
self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
if config.optimizer.max_grad_norm > 0:
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), config.optimizer.max_grad_norm
)
self.scaler.step(self.optimizer)
self.scaler.update()
self.scheduler.step()
# logging
for name in loss_names:
value = loss_dict[name]
value = value if isinstance(value, float) else value.item()
metric_logger.update(**{f"{media_type}-{name}": value})
metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
metric_logger.update(temperature=model_without_ddp.temp.item())
if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
logs = metric_logger.get_global_avg_dict()
log_dict_to_wandb(logs, step=global_step, prefix="train/")
global_step += 1
if config.debug and global_step % 2 == 0:
logger.info("debug mode, break training loop")
break
# gather the stats from all processes
metric_logger.synchronize_between_processes()
logger.info(f"Averaged stats: {metric_logger.global_avg()}")
return global_step
if __name__ == "__main__":
cfg = setup_main()
trainer = PretrainTrainer(cfg)
if cfg.evaluate:
trainer.evaluate()
else:
trainer.train()
|