File size: 13,986 Bytes
4940c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os
import numpy as np
import math
import sys
from typing import Iterable, Optional
import torch
from mixup import Mixup
from timm.utils import accuracy, ModelEma
import utils_mae as utils
from scipy.special import softmax
import gc
import pickle

def train_class_batch(model, samples, target, criterion):
    outputs = model(samples)
    loss = criterion(outputs, target)
    return loss, outputs


def get_loss_scale_for_deepspeed(model):
    optimizer = model.optimizer
    return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale


def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
                    data_loader: Iterable, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
                    model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None,
                    start_steps=None, lr_schedule_values=None, wd_schedule_values=None,
                    num_training_steps_per_epoch=None, update_freq=None):
    model.train(True)
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 10

    if loss_scaler is None:
        model.zero_grad()
        model.micro_steps = 0
    else:
        optimizer.zero_grad()

    for data_iter_step, (samples, targets, _, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        step = data_iter_step // update_freq
        if step >= num_training_steps_per_epoch:
            continue
        it = start_steps + step  # global training iteration
        # Update LR & WD for the first acc
        if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
            for i, param_group in enumerate(optimizer.param_groups):
                if lr_schedule_values is not None:
                    param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
                if wd_schedule_values is not None and param_group["weight_decay"] > 0:
                    param_group["weight_decay"] = wd_schedule_values[it]

        samples = samples.to(device, non_blocking=True)
        targets = targets.to(device, non_blocking=True)

        if mixup_fn is not None:
            samples, targets = mixup_fn(samples, targets)

        if loss_scaler is None:
            samples = samples.half()
            loss, output = train_class_batch(
                model, samples, targets, criterion)
        else:
            with torch.cuda.amp.autocast():
                loss, output = train_class_batch(
                    model, samples, targets, criterion)

        loss_value = loss.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            sys.exit(1)

        if loss_scaler is None:
            loss /= update_freq
            model.backward(loss)
            model.step()

            if (data_iter_step + 1) % update_freq == 0:
                # model.zero_grad()
                # Deepspeed will call step() & model.zero_grad() automatic
                if model_ema is not None:
                    model_ema.update(model)
            grad_norm = None
            loss_scale_value = get_loss_scale_for_deepspeed(model)
        else:
            # this attribute is added by timm on one optimizer (adahessian)
            is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
            loss /= update_freq
            grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
                                    parameters=model.parameters(), create_graph=is_second_order,
                                    update_grad=(data_iter_step + 1) % update_freq == 0)
            if (data_iter_step + 1) % update_freq == 0:
                optimizer.zero_grad()
                if model_ema is not None:
                    model_ema.update(model)
            loss_scale_value = loss_scaler.state_dict()["scale"]

        torch.cuda.synchronize()

        if mixup_fn is None:
            class_acc = (output.max(-1)[-1] == targets).float().mean()
        else:
            class_acc = None
        metric_logger.update(loss=loss_value)
        metric_logger.update(class_acc=class_acc)
        metric_logger.update(loss_scale=loss_scale_value)
        min_lr = 10.
        max_lr = 0.
        for group in optimizer.param_groups:
            min_lr = min(min_lr, group["lr"])
            max_lr = max(max_lr, group["lr"])

        metric_logger.update(lr=max_lr)
        metric_logger.update(min_lr=min_lr)
        weight_decay_value = None
        for group in optimizer.param_groups:
            if group["weight_decay"] > 0:
                weight_decay_value = group["weight_decay"]
        metric_logger.update(weight_decay=weight_decay_value)
        metric_logger.update(grad_norm=grad_norm)

        if log_writer is not None:
            log_writer.update(loss=loss_value, head="loss")
            log_writer.update(class_acc=class_acc, head="loss")
            log_writer.update(loss_scale=loss_scale_value, head="opt")
            log_writer.update(lr=max_lr, head="opt")
            log_writer.update(min_lr=min_lr, head="opt")
            log_writer.update(weight_decay=weight_decay_value, head="opt")
            log_writer.update(grad_norm=grad_norm, head="opt")

            log_writer.set_step()

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


@torch.no_grad()
def validation_one_epoch(data_loader, model, device):
    criterion = torch.nn.CrossEntropyLoss()

    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Val:'

    # switch to evaluation mode
    model.eval()

    for batch in metric_logger.log_every(data_loader, 10, header):
        videos = batch[0]
        target = batch[1]
        videos = videos.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)

        # compute output
        with torch.cuda.amp.autocast():
            output = model(videos)
            loss = criterion(output, target)

        acc1, acc5 = accuracy(output, target, topk=(1, 5))

        batch_size = videos.shape[0]
        metric_logger.update(loss=loss.item())
        metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
        metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
          .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))

    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}



@torch.no_grad()
def final_test(data_loader, model, device, file):
    criterion = torch.nn.CrossEntropyLoss()

    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'

    # switch to evaluation mode
    model.eval()
    final_result = []
    
    for batch in metric_logger.log_every(data_loader, 10, header):
        videos = batch[0]
        target = batch[1]
        ids = batch[2]
        chunk_nb = batch[3]
        split_nb = batch[4]
        videos = videos.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)

        # compute output
        with torch.cuda.amp.autocast():
            output = model(videos)
            loss = criterion(output, target)

        for i in range(output.size(0)):
            string = "{} {} {} {} {}\n".format(ids[i], \
                                                str(output.data[i].cpu().numpy().tolist()), \
                                                str(int(target[i].cpu().numpy())), \
                                                str(int(chunk_nb[i].cpu().numpy())), \
                                                str(int(split_nb[i].cpu().numpy())))
            final_result.append(string)

        acc1, acc5 = accuracy(output, target, topk=(1, 5))

        batch_size = videos.shape[0]
        metric_logger.update(loss=loss.item())
        metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
        metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)

    if not os.path.exists(file):
        os.mknod(file)
    with open(file, 'w') as f:
        f.write("{}, {}\n".format(acc1, acc5))
        for line in final_result:
            f.write(line)
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
          .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))

    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


def merge(eval_path, num_tasks):
    dict_feats = {}
    dict_label = {}
    dict_pos = {}
    print("Reading individual output files")

    for x in range(num_tasks):
        file = os.path.join(eval_path, str(x) + '.txt')
        lines = open(file, 'r').readlines()[1:]
        for line in lines:
            line = line.strip()
            name = line.split('[')[0]
            label = line.split(']')[1].split(' ')[1]
            chunk_nb = line.split(']')[1].split(' ')[2]
            split_nb = line.split(']')[1].split(' ')[3]
            data = np.fromstring(line.split('[')[1].split(']')[0], dtype=float, sep=',')
            data = softmax(data)
            if not name in dict_feats:
                dict_feats[name] = []
                dict_label[name] = 0
                dict_pos[name] = []
            if chunk_nb + split_nb in dict_pos[name]:
                continue
            dict_feats[name].append(data)
            dict_pos[name].append(chunk_nb + split_nb)
            dict_label[name] = label
    print("Computing final results")

    input_lst = []
    print(len(dict_feats))
    for i, item in enumerate(dict_feats):
        input_lst.append([i, item, dict_feats[item], dict_label[item]])
    from multiprocessing import Pool
    p = Pool(64)
    ans = p.map(compute_video, input_lst)
    top1 = [x[1] for x in ans]
    top5 = [x[2] for x in ans]
    pred = [x[0] for x in ans]
    label = [x[3] for x in ans]
    final_top1 ,final_top5 = np.mean(top1), np.mean(top5)
    return final_top1*100 ,final_top5*100

def compute_video(lst):
    i, video_id, data, label = lst
    feat = [x for x in data]
    feat = np.mean(feat, axis=0)
    pred = np.argmax(feat)
    top1 = (int(pred) == int(label)) * 1.0
    top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0
    return [pred, top1, top5, int(label)]

def merge_mean_per_class(eval_path, num_tasks,nb_classes):
    dict_feats = {}
    dict_label = {}
    dict_pos = {}
    #print("Reading individual output files")

    for x in range(num_tasks):
        file = os.path.join(eval_path, str(x) + '.txt')
        lines = open(file, 'r').readlines()[1:]
        for line in lines:
            line = line.strip()
            name = line.split('[')[0]
            label = line.split(']')[1].split(' ')[1]
            chunk_nb = line.split(']')[1].split(' ')[2]
            split_nb = line.split(']')[1].split(' ')[3]
            data = np.fromstring(line.split('[')[1].split(']')[0], dtype=float, sep=',')
            data = softmax(data)
            if not name in dict_feats:
                dict_feats[name] = []
                dict_label[name] = 0
                dict_pos[name] = []
            if chunk_nb + split_nb in dict_pos[name]:
                continue
            dict_feats[name].append(data)
            dict_pos[name].append(chunk_nb + split_nb)
            dict_label[name] = label
    print("Computing mean per class results")

    input_lst = []
    all_pred = []
    all_label = []

    classes = torch.arange(nb_classes)
    classwise_top1 = [0 for c in classes]
    classwise_top5 = [0 for c in classes]
    actual_nb_classes = nb_classes
    cnt = 0

    for c in classes:
        input_lst = []
        for i, item in enumerate(dict_feats):
            if int(dict_label[item]) == c:
                input_lst.append([i, item, dict_feats[item], dict_label[item]])
        cnt += len(input_lst)

        # p = Pool(4)
        # ans = p.map(compute_video, input_lst)
        if len(input_lst) == 0:
            actual_nb_classes -= 1
            print(f"Class {c} is not present in test set, skip")
            continue

        ans = []
        for i in input_lst:
            ans.append(compute_video(i))
        top1 = [x[1] for x in ans]
        top5 = [x[2] for x in ans]
        pred = [x[0] for x in ans]
        label = [x[3] for x in ans]

        # for i in pred:
        #     all_pred.append(i)
        # for j in label:
        #     all_label.append(j)
        final_top1 ,final_top5 = np.mean(top1), np.mean(top5)

        classwise_top1[c] = final_top1*100
        classwise_top5[c] = final_top5*100

        del input_lst
        del ans
        del top1
        del top5
        del pred
        del label
        gc.collect()

    assert cnt == len(dict_feats)
    # pred_cnt = 0
    # for idx, p in enumerate(all_pred):
    #     if int(p) == int(all_label[idx]):
    #         pred_cnt += 1
    # print(pred_cnt/len(all_pred))
    classwise_top1_path = os.path.join(eval_path, "classwise_top1.pkl")
    with open(classwise_top1_path, 'wb') as file:
        pickle.dump(classwise_top1, file)
    
    classwise_top1 = np.sum(classwise_top1) / actual_nb_classes
    classwise_top5 = np.sum(classwise_top5) / actual_nb_classes

    return classwise_top1,classwise_top5