File size: 13,986 Bytes
4940c8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import os
import numpy as np
import math
import sys
from typing import Iterable, Optional
import torch
from mixup import Mixup
from timm.utils import accuracy, ModelEma
import utils_mae as utils
from scipy.special import softmax
import gc
import pickle
def train_class_batch(model, samples, target, criterion):
outputs = model(samples)
loss = criterion(outputs, target)
return loss, outputs
def get_loss_scale_for_deepspeed(model):
optimizer = model.optimizer
return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None,
start_steps=None, lr_schedule_values=None, wd_schedule_values=None,
num_training_steps_per_epoch=None, update_freq=None):
model.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for data_iter_step, (samples, targets, _, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
if step >= num_training_steps_per_epoch:
continue
it = start_steps + step # global training iteration
# Update LR & WD for the first acc
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if loss_scaler is None:
samples = samples.half()
loss, output = train_class_batch(
model, samples, targets, criterion)
else:
with torch.cuda.amp.autocast():
loss, output = train_class_batch(
model, samples, targets, criterion)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
model.step()
if (data_iter_step + 1) % update_freq == 0:
# model.zero_grad()
# Deepspeed will call step() & model.zero_grad() automatic
if model_ema is not None:
model_ema.update(model)
grad_norm = None
loss_scale_value = get_loss_scale_for_deepspeed(model)
else:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
if mixup_fn is None:
class_acc = (output.max(-1)[-1] == targets).float().mean()
else:
class_acc = None
metric_logger.update(loss=loss_value)
metric_logger.update(class_acc=class_acc)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
log_writer.update(class_acc=class_acc, head="loss")
log_writer.update(loss_scale=loss_scale_value, head="opt")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.set_step()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def validation_one_epoch(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Val:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
videos = batch[0]
target = batch[1]
videos = videos.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(videos)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = videos.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def final_test(data_loader, model, device, file):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
final_result = []
for batch in metric_logger.log_every(data_loader, 10, header):
videos = batch[0]
target = batch[1]
ids = batch[2]
chunk_nb = batch[3]
split_nb = batch[4]
videos = videos.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(videos)
loss = criterion(output, target)
for i in range(output.size(0)):
string = "{} {} {} {} {}\n".format(ids[i], \
str(output.data[i].cpu().numpy().tolist()), \
str(int(target[i].cpu().numpy())), \
str(int(chunk_nb[i].cpu().numpy())), \
str(int(split_nb[i].cpu().numpy())))
final_result.append(string)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = videos.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
if not os.path.exists(file):
os.mknod(file)
with open(file, 'w') as f:
f.write("{}, {}\n".format(acc1, acc5))
for line in final_result:
f.write(line)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def merge(eval_path, num_tasks):
dict_feats = {}
dict_label = {}
dict_pos = {}
print("Reading individual output files")
for x in range(num_tasks):
file = os.path.join(eval_path, str(x) + '.txt')
lines = open(file, 'r').readlines()[1:]
for line in lines:
line = line.strip()
name = line.split('[')[0]
label = line.split(']')[1].split(' ')[1]
chunk_nb = line.split(']')[1].split(' ')[2]
split_nb = line.split(']')[1].split(' ')[3]
data = np.fromstring(line.split('[')[1].split(']')[0], dtype=float, sep=',')
data = softmax(data)
if not name in dict_feats:
dict_feats[name] = []
dict_label[name] = 0
dict_pos[name] = []
if chunk_nb + split_nb in dict_pos[name]:
continue
dict_feats[name].append(data)
dict_pos[name].append(chunk_nb + split_nb)
dict_label[name] = label
print("Computing final results")
input_lst = []
print(len(dict_feats))
for i, item in enumerate(dict_feats):
input_lst.append([i, item, dict_feats[item], dict_label[item]])
from multiprocessing import Pool
p = Pool(64)
ans = p.map(compute_video, input_lst)
top1 = [x[1] for x in ans]
top5 = [x[2] for x in ans]
pred = [x[0] for x in ans]
label = [x[3] for x in ans]
final_top1 ,final_top5 = np.mean(top1), np.mean(top5)
return final_top1*100 ,final_top5*100
def compute_video(lst):
i, video_id, data, label = lst
feat = [x for x in data]
feat = np.mean(feat, axis=0)
pred = np.argmax(feat)
top1 = (int(pred) == int(label)) * 1.0
top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0
return [pred, top1, top5, int(label)]
def merge_mean_per_class(eval_path, num_tasks,nb_classes):
dict_feats = {}
dict_label = {}
dict_pos = {}
#print("Reading individual output files")
for x in range(num_tasks):
file = os.path.join(eval_path, str(x) + '.txt')
lines = open(file, 'r').readlines()[1:]
for line in lines:
line = line.strip()
name = line.split('[')[0]
label = line.split(']')[1].split(' ')[1]
chunk_nb = line.split(']')[1].split(' ')[2]
split_nb = line.split(']')[1].split(' ')[3]
data = np.fromstring(line.split('[')[1].split(']')[0], dtype=float, sep=',')
data = softmax(data)
if not name in dict_feats:
dict_feats[name] = []
dict_label[name] = 0
dict_pos[name] = []
if chunk_nb + split_nb in dict_pos[name]:
continue
dict_feats[name].append(data)
dict_pos[name].append(chunk_nb + split_nb)
dict_label[name] = label
print("Computing mean per class results")
input_lst = []
all_pred = []
all_label = []
classes = torch.arange(nb_classes)
classwise_top1 = [0 for c in classes]
classwise_top5 = [0 for c in classes]
actual_nb_classes = nb_classes
cnt = 0
for c in classes:
input_lst = []
for i, item in enumerate(dict_feats):
if int(dict_label[item]) == c:
input_lst.append([i, item, dict_feats[item], dict_label[item]])
cnt += len(input_lst)
# p = Pool(4)
# ans = p.map(compute_video, input_lst)
if len(input_lst) == 0:
actual_nb_classes -= 1
print(f"Class {c} is not present in test set, skip")
continue
ans = []
for i in input_lst:
ans.append(compute_video(i))
top1 = [x[1] for x in ans]
top5 = [x[2] for x in ans]
pred = [x[0] for x in ans]
label = [x[3] for x in ans]
# for i in pred:
# all_pred.append(i)
# for j in label:
# all_label.append(j)
final_top1 ,final_top5 = np.mean(top1), np.mean(top5)
classwise_top1[c] = final_top1*100
classwise_top5[c] = final_top5*100
del input_lst
del ans
del top1
del top5
del pred
del label
gc.collect()
assert cnt == len(dict_feats)
# pred_cnt = 0
# for idx, p in enumerate(all_pred):
# if int(p) == int(all_label[idx]):
# pred_cnt += 1
# print(pred_cnt/len(all_pred))
classwise_top1_path = os.path.join(eval_path, "classwise_top1.pkl")
with open(classwise_top1_path, 'wb') as file:
pickle.dump(classwise_top1, file)
classwise_top1 = np.sum(classwise_top1) / actual_nb_classes
classwise_top5 = np.sum(classwise_top5) / actual_nb_classes
return classwise_top1,classwise_top5
|