File size: 24,991 Bytes
401fa20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
import datetime
import logging
import time
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from models.criterions import get_sim
from utils.basic_utils import MetricLogger
from utils.distributed import get_rank, get_world_size
logger = logging.getLogger(__name__)
def extract_text_feats(texts, max_txt_l, tokenizer, model, device):
num_text = len(texts)
text_bs = 256
text_feats = []
text_atts = []
text_ids = []
for i in range(0, num_text, text_bs):
text = texts[i : min(num_text, i + text_bs)]
text_input = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=max_txt_l,
return_tensors="pt",
).to(device)
text_feat = model.encode_text(text_input)[0]
text_feats.append(text_feat)
text_atts.append(text_input.attention_mask)
text_ids.append(text_input.input_ids)
text_feats = torch.cat(text_feats, dim=0)
text_atts = torch.cat(text_atts, dim=0)
text_ids = torch.cat(text_ids, dim=0)
return text_feats, text_atts, text_ids
def extract_vision_feats(data_loader, model, device, config):
image_feats_all = []
pooled_image_feats_all = []
metric_logger = MetricLogger(delimiter=" ")
header = "extracting image feats"
iterator = metric_logger.log_every(data_loader, 100, header)
for image, img_id in iterator:
image = image.to(device, non_blocking=True)
image_feat, pooled_image_feat = model.encode_vision(image, test=True)
if config.evaluation.eval_frame_ensemble == "concat": # default
if len(image_feat.shape) == 4:
image_feat = rearrange(image_feat, "b t l c -> b (t l) c").contiguous()
image_feat = image_feat.unsqueeze(1) # (bsz, 1, #frm*L, d)
else:
assert config.video_input.num_frames == 1, "only support single-frame"
assert config.evaluation.eval_frame_ensemble in ["mean", "max", "lse"]
if config.evaluation.eval_offload:
image_feats_all.append(image_feat.cpu())
pooled_image_feats_all.append(pooled_image_feat.cpu())
else:
image_feats_all.append(image_feat)
pooled_image_feats_all.append(pooled_image_feat)
image_feats_all = torch.cat(image_feats_all, dim=0)
pooled_image_feats_all = torch.cat(pooled_image_feats_all, dim=0)
return image_feats_all, pooled_image_feats_all
@torch.no_grad()
def evaluation_wrapper(model, data_loader, tokenizer, device, config, prefix=""):
if dist.get_rank() == 0: # Only on one rank
#with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.float):
#if config.model.model_cls == "VindLU_VideoCLIP":
if config.model.model_cls == "VindLU_VideoCLIP" or config.model.model_cls == "ViCLIP":
i2t_x, t2i_x, i2t_emb, t2i_emb = evaluation_video_clip(
model, data_loader, tokenizer, device, config
)
else:
i2t_x, t2i_x, i2t_emb, t2i_emb = evaluation(
model, data_loader, tokenizer, device, config
)
score_pairs = [
(prefix + "/", i2t_x, t2i_x),
(prefix + "_emb/", i2t_emb, t2i_emb),
]
res = dict()
for name, i2t, t2i in score_pairs:
if i2t is not None:
txt2img_ids = data_loader.dataset.txt2img
img2txt_ids = data_loader.dataset.img2txt
res[name] = itm_eval(i2t, t2i, txt2img_ids, img2txt_ids)
else:
res = dict()
res_list = [res]
dist.broadcast_object_list(res_list, src=0)
res = res_list[0]
return res
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config):
model.eval()
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation:"
dtype = torch.half if config.fp16 else torch.float
media_type = data_loader.dataset.media_type
logger.info(f"Start evaluation for media_type={media_type}")
logger.info("Computing dual encoder features...")
start_time = time.time()
# this computes all features in each GPU
texts = data_loader.dataset.text
max_txt_l = config.inputs.max_txt_l
if not isinstance(max_txt_l, int):
max_txt_l = max_txt_l[media_type]
text_feats, text_atts, text_ids = extract_text_feats(
texts, max_txt_l, tokenizer, model, device
) # (bsz, Lt, d), (bsz, Lt)
image_feats, pooled_image_feats = extract_vision_feats(
data_loader, model, device, config
) # (bsz, 1, #frm*Li, d) or (bsz, #frm, Li, d), (bsz, #frm, d)
logger.info("Finished feature extraction")
logger.info("Computing ITC scores [dot-product]")
_pooled_image_feats = (
pooled_image_feats.to(device, non_blocking=True)
if config.evaluation.eval_offload
else pooled_image_feats
)
i2t_scores, t2i_scores = get_sim(
model.vision_proj(_pooled_image_feats), model.text_proj(text_feats[:, 0]),
agg_method=config.model.get("agg_method", "mean"),
)
logger.info("Computing ITC scores [dot-product], done!")
num_images = len(data_loader.dataset.image)
i2t_scores_x = torch.full((num_images, len(texts)), -100.0).to(
device, torch.float, non_blocking=True
)
# computes only part of the scores at each GPU, gather at the end
logger.info("Rerank dual-encoder results with cross-encoder...")
num_tasks = get_world_size()
rank = get_rank()
# only uses the part associated with the raw eval set
# compute image2text #
step = num_images // num_tasks + 1
start = rank * step
end = min(num_images, start + step)
text_encoder = model.get_text_encoder()
iterator = metric_logger.log_every(i2t_scores[start:end], 100, header)
logger.info(f"i2t_scores.shape {i2t_scores[start:end].shape}")
# generate score for each clip, and aggregate all clip scores for a video
n_clip_per_video = (
image_feats.shape[1] if not config.deep_fusion else image_feats[0].shape[1]
)
logger.info(
f"n_clip_per_video={n_clip_per_video}, with eval_frame_ensemble={config.evaluation.eval_frame_ensemble}"
)
for i, sims in enumerate(iterator):
k = min(len(sims), config.evaluation.k_test)
topk_sim, topk_idx = sims.topk(k=k, dim=0)
clip_scores = []
for clip_idx in range(n_clip_per_video):
if config.deep_fusion:
encoder_output = [
feat[start + i, clip_idx].to(device, non_blocking=True)
for feat in image_feats
]
else:
encoder_output = (
image_feats[start + i, clip_idx].to(device, non_blocking=True)
if config.evaluation.eval_offload
else image_feats[start + i, clip_idx]
) # (#frm*Li, d)
""" original
encoder_output = encoder_output.repeat(k, 1, 1) # (k=128, #frm*Li, d)
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long
).to(device, non_blocking=True)
output = text_encoder(
encoder_embeds=text_feats[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode="fusion"
)
itm_embeds = output.last_hidden_state[:, 0]
"""
# new
bs = 128
# bs = config.batch_size_test.video
itm_embeds = []
if not config.deep_fusion: # Create fake list
encoder_output = [encoder_output]
encoder_output = [feat.repeat(bs, 1, 1) for feat in encoder_output]
encoder_att = [
torch.ones(feat.size()[:-1], dtype=torch.long).to(device, non_blocking=True)
for feat in encoder_output
]
for j in range(0, len(topk_idx), bs):
cur_bs = min(bs, len(topk_idx) - j)
encoder_output = [feat[:cur_bs] for feat in encoder_output]
encoder_att = [att[:cur_bs] for att in encoder_att]
batch_encoder_output = encoder_output if config.deep_fusion else encoder_output[0]
batch_encoder_att = encoder_att if config.deep_fusion else encoder_att[0]
if "VindLU_BLIP" in config.model.get("model_cls", ""):
output = model.vtm_embed(
text_ids=text_ids[topk_idx[j:j+bs]],
text_atts=text_atts[topk_idx[j:j+bs]],
vision_embeds=batch_encoder_output,
vision_atts=batch_encoder_att,
)
else:
output = text_encoder(
encoder_embeds=text_feats[topk_idx[j:j+bs]],
attention_mask=text_atts[topk_idx[j:j+bs]],
encoder_hidden_states=batch_encoder_output,
encoder_attention_mask=batch_encoder_att,
return_dict=True,
mode="fusion",
).last_hidden_state[:, 0]
itm_embeds.append(output)
itm_embeds = torch.cat(itm_embeds, dim=0)
""" Original
if config.deep_fusion:
encoder_output = [feat.repeat(bs, 1, 1) for feat in encoder_output]
encoder_att = [
torch.ones(feat.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
for feat in encoder_output
]
else:
encoder_output = encoder_output.repeat(bs, 1, 1)
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long
).to(device, non_blocking=True)
if config.deep_fusion:
if len(topk_idx) % bs != 0:
left = len(topk_idx) % bs
left_encoder_output = [feat.repeat(left, 1, 1) for feat in encoder_output]
left_encoder_att = [
torch.ones(feat.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
for feat in left_encoder_output
]
encoder_output = [feat.repeat(bs, 1, 1) for feat in encoder_output]
encoder_att = [
torch.ones(feat.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
for feat in encoder_output
]
else:
if len(topk_idx) % bs != 0:
left = len(topk_idx) % bs
left_encoder_output = encoder_output.repeat(left, 1, 1) # (k=128, #frm*Li, d)
left_encoder_att = torch.ones(left_encoder_output.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
encoder_output = encoder_output.repeat(bs, 1, 1) # (k=128, #frm*Li, d)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
for j in range(0, len(topk_idx), bs):
if j + bs > len(topk_idx):
output = text_encoder(
encoder_embeds=text_feats[topk_idx[j:]],
attention_mask=text_atts[topk_idx[j:]],
encoder_hidden_states=left_encoder_output,
encoder_attention_mask=left_encoder_att,
return_dict=True,
mode="fusion",
)
else:
output = text_encoder(
encoder_embeds=text_feats[topk_idx[j : j + bs]],
attention_mask=text_atts[topk_idx[j : j + bs]],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode="fusion",
)
batch_itm_embeds = output.last_hidden_state[:, 0]
itm_embeds.append(batch_itm_embeds)
itm_embeds = torch.cat(itm_embeds, dim=0)
# end new
"""
score = model.itm_head(itm_embeds)[:, 1]
clip_scores.append(score)
if len(clip_scores) == 1:
score = clip_scores[0]
else:
assert config.evaluation.eval_frame_ensemble in ["mean", "max", "lse"]
clip_scores = torch.stack(clip_scores) # (#clips, k)
if config.evaluation.eval_frame_ensemble == "mean":
score = clip_scores.mean(0)
elif config.evaluation.eval_frame_ensemble == "max":
score = clip_scores.max(0)[0]
elif config.evaluation.eval_frame_ensemble == "lse": # LogSumExp
score = torch.logsumexp(clip_scores, dim=0)
else:
raise ValueError(
"config.evaluation.eval_frame_ensemble must in [mean, max, lse] when #clip > 1."
)
i2t_scores_x[start + i, topk_idx] = score.to(i2t_scores_x.dtype)
# compute text2image #
num_text = len(data_loader.dataset.text)
t2i_scores_x = torch.full((num_text, len(data_loader.dataset.image)), -100.0).to(
device, torch.float, non_blocking=True
)
step = num_text // num_tasks + 1
start = rank * step
end = min(num_text, start + step)
iterator = metric_logger.log_every(t2i_scores[start:end], 100, header)
logger.info(f"t2i_scores.shape {t2i_scores[start:end].shape}")
# generate score for each clip, and aggregate all clip scores for a video
n_clip_per_video = (
image_feats.shape[1] if not config.deep_fusion else image_feats[0].shape[1]
)
k = config.evaluation.k_test
logger.info(f"Top-{k} matching")
for i, sims in enumerate(iterator):
k = min(len(sims), config.evaluation.k_test)
topk_sim, topk_idx = sims.topk(k=k, dim=0)
clip_scores = []
for clip_idx in range(n_clip_per_video):
"""old
encoder_output = image_feats[topk_idx, clip_idx].to(device, non_blocking=True) \
if config.evaluation.eval_offload else image_feats[topk_idx, clip_idx]
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long
).to(device, non_blocking=True)
output = text_encoder(
encoder_embeds=text_feats[start+i].repeat(k, 1, 1),
attention_mask=text_atts[start+i].repeat(k, 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode="fusion"
)
itm_embeds = output.last_hidden_state[:, 0]
"""
# new
bs = 128
# bs = config.batch_size_test.video
itm_embeds = []
for j in range(0, len(topk_idx), bs):
fake_image_feats = [image_feats] if not config.deep_fusion else image_feats
encoder_output = [
feat[topk_idx[j : j + bs], clip_idx].to(device, non_blocking=True)
if config.evaluation.eval_offload
else feat[topk_idx[j : j + bs], clip_idx]
for feat in fake_image_feats
]
encoder_att = [
torch.ones(feat.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
for feat in encoder_output
]
cur_bs = min(bs, len(topk_idx) - j)
batch_encoder_output = encoder_output if config.deep_fusion else encoder_output[0]
batch_encoder_att = encoder_att if config.deep_fusion else encoder_att[0]
if "VindLU_BLIP" in config.model.get("model_cls", ""):
output = model.vtm_embed(
text_ids=text_ids[start + i].repeat(cur_bs, 1),
text_atts=text_atts[start + i].repeat(cur_bs, 1),
vision_embeds=batch_encoder_output,
vision_atts=batch_encoder_att,
)
else:
output = text_encoder(
encoder_embeds=text_feats[start + i].repeat(cur_bs, 1, 1),
attention_mask=text_atts[start + i].repeat(cur_bs, 1),
encoder_hidden_states=batch_encoder_output,
encoder_attention_mask=batch_encoder_att,
return_dict=True,
mode="fusion",
).last_hidden_state[:, 0]
itm_embeds.append(output)
""" old
if config.deep_fusion:
encoder_output = [
feat[topk_idx[j : j + bs], clip_idx].to(device, non_blocking=True)
for feat in image_feats
]
encoder_att = [
torch.ones(feat.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
for feat in encoder_output
]
else:
encoder_output = (
image_feats[topk_idx[j : j + bs], clip_idx].to(
device, non_blocking=True
)
if config.evaluation.eval_offload
else image_feats[topk_idx[j : j + bs], clip_idx]
)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(
device, non_blocking=True
)
cur_bs = (
encoder_output.shape[0]
if not config.deep_fusion
else encoder_output[0].shape[0]
)
output = text_encoder(
encoder_embeds=text_feats[start + i].repeat(cur_bs, 1, 1),
attention_mask=text_atts[start + i].repeat(cur_bs, 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode="fusion",
)
batch_itm_embeds = output.last_hidden_state[:, 0]
itm_embeds.append(batch_itm_embeds)
"""
itm_embeds = torch.cat(itm_embeds, dim=0)
# end new
score = model.itm_head(itm_embeds)[:, 1]
clip_scores.append(score)
if len(clip_scores) == 1:
score = clip_scores[0]
else:
assert config.evaluation.eval_frame_ensemble in ["mean", "max", "lse"]
clip_scores = torch.stack(clip_scores) # (#clips, k)
if config.evaluation.eval_frame_ensemble == "mean":
score = clip_scores.mean(0)
elif config.evaluation.eval_frame_ensemble == "max":
score = clip_scores.max(0)[0]
elif config.evaluation.eval_frame_ensemble == "lse": # LogSumExp
score = torch.logsumexp(clip_scores, dim=0)
else:
raise ValueError(
"config.evaluation.eval_frame_ensemble must in [mean, max, lse] when #clip > 1."
)
t2i_scores_x[start + i, topk_idx] = score.to(t2i_scores_x.dtype)
if config.distributed:
# gether across GPUs
dist.barrier()
dist.all_reduce(i2t_scores_x, op=dist.ReduceOp.SUM)
dist.all_reduce(t2i_scores_x, op=dist.ReduceOp.SUM)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Evaluation time {total_time_str}")
return (
i2t_scores_x.cpu().float().numpy(),
t2i_scores_x.cpu().float().numpy(),
i2t_scores.cpu().float().numpy(),
i2t_scores.T.cpu().float().numpy(),
)
@torch.no_grad()
def evaluation_video_clip(model, data_loader, tokenizer, device, config):
model.eval()
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation:"
#dtype = torch.half if config.fp16 else torch.float
dtype = torch.float32
media_type = data_loader.dataset.media_type
logger.info(f"Start evaluation for media_type={media_type}")
logger.info("Computing dual encoder features...")
# this computes all features in each GPU
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_feats = []
for i in range(0, num_text, text_bs):
text = texts[i : min(num_text, i + text_bs)]
text_feat = model.encode_text(text)
text_feats.append(text_feat.cpu())
text_feats = torch.cat(text_feats, dim=0)
logger.info("Finished computing text features")
if hasattr(data_loader.dataset, "num_prompts"):
np = data_loader.dataset.num_prompts
logger.info("Using {} prompts".format(np))
nt = len(data_loader.dataset.text) // np
text_feats = text_feats.view(nt, np, -1)
image_feats = []
metric_logger = MetricLogger(delimiter=" ")
header = "extracting image feats"
iterator = metric_logger.log_every(data_loader, 100, header)
for image, _ in iterator:
image = image.to(device, non_blocking=True)
image_feat = model.encode_vision(image, test=True)
image_feats.append(image_feat.cpu())
image_feats = torch.cat(image_feats, dim=0)
logger.info("Finished feature extraction")
logger.info("Computing ITC scores [dot-product]")
i2t_scores, t2i_scores = get_sim(image_feats, text_feats)
del image_feats, text_feats
logger.info("Computing ITC scores [dot-product], done!")
i2t_scores_dsl = i2t_scores * i2t_scores.softmax(dim=0)
i2t_scores_dsl_T = i2t_scores.T * i2t_scores.T.softmax(dim=0)
return (
i2t_scores.cpu().float().numpy(),
i2t_scores.T.cpu().float().numpy(),
i2t_scores_dsl.cpu().float().numpy(),
i2t_scores_dsl_T.cpu().float().numpy(),
)
@torch.no_grad()
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
# Images->Text
ranks = np.zeros(scores_i2t.shape[0])
for index, score in enumerate(scores_i2t):
inds = np.argsort(score)[::-1]
# Score
gt_txt_ids = img2txt[index]
if isinstance(gt_txt_ids, int):
ranks[index] = np.where(inds == gt_txt_ids)[0][0]
else:
rank = 1e20
for i in gt_txt_ids:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
# Text->Images
ranks = np.zeros(scores_t2i.shape[0])
for index, score in enumerate(scores_t2i):
inds = np.argsort(score)[::-1]
gt_img_ids = txt2img[index]
if isinstance(gt_img_ids, int):
ranks[index] = np.where(inds == gt_img_ids)[0][0]
else: # list, used in the case each caption has multiple GT images
# Score
rank = 1e20
for i in gt_img_ids:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
tr_mean = (tr1 + tr5 + tr10) / 3
ir_mean = (ir1 + ir5 + ir10) / 3
r_mean = (tr_mean + ir_mean) / 2
eval_result = {
"txt_r1": tr1,
"txt_r5": tr5,
"txt_r10": tr10,
"txt_r_mean": tr_mean,
"img_r1": ir1,
"img_r5": ir5,
"img_r10": ir10,
"img_r_mean": ir_mean,
"r_mean": r_mean,
}
eval_result = {k: round(v, 2) for k, v in eval_result.items()}
return eval_result
|