File size: 14,374 Bytes
b747de5 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccc6d5db90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccc6d5dc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccc6d5dcb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccc6d5dd40>", "_build": "<function ActorCriticPolicy._build at 0x7fccc6d5ddd0>", "forward": "<function ActorCriticPolicy.forward at 0x7fccc6d5de60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccc6d5def0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fccc6d5df80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccc6d65050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccc6d650e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccc6d65170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fccc6db5450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652217758.1657145, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACmfj0PfXa8qts3vbkL0729LLY9kwqEPgAAgD8AAIA/AAW3PY8qaroIXfw5qQq9t0FLHzsXIA+5AACAPwAAgD+zAlM9j95/uorsOzkAHbwyZhXKuiaKVrgAAIA/AACAP4BmTb0pCEu66b6sOldErzUoYTs6XD7HuQAAgD8AAIA/zT4rvB/F+7kltQm7R29gOLPieLvQHpA5AACAPwAAgD+ak7G8jzoGutP61Tn6p0W2FrEHu6KS+bgAAIA/AACAPw3Wtz1lFGU+4NJgPdqXXr7Yyjk9O+CFvAAAAAAAAAAA2gKcPl4pgT9/cxE/cyq2vg3Jaz6t6F0+AAAAAAAAAACm/qk9KVRKusC5XDmp5RI2l4ccuwUSf7gAAIA/AACAP5pyWT3r92k/GpiHPc1nn76FxGE9gnDxvAAAAAAAAAAA4GoDPj2mEzqAVn66JhElt9VYLTxmspc5AACAPwAAgD+aLO48XBs2uktgYTqEIMU04oafuZ11gbkAAIA/AACAP7qfBL5yJjA/R7MCPnMFNL6amxu9hk3qvQAAAAAAAAAAWnaNPfY0aLp5eiY6ppawNZ4YQDvCcj65AACAPwAAgD+aC3S8CruzP19rP79ENQe+ZWmSPAKsOz4AAAAAAAAAAJoU/by4Vtq5cbnMOmb9OTWt8Eq60oTvuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIezNqvkp7YkCUhpRSlIwBbJRN6AOMAXSUR0CTWsDklu3udX2UKGgGaAloD0MIL/1LUpnaWUCUhpRSlGgVTegDaBZHQJNa0VRDTjN1fZQoaAZoCWgPQwjequtQTUEvwJSGlFKUaBVNOAFoFkdAk1sCS3b213V9lChoBmgJaA9DCIOI1LQLAGBAlIaUUpRoFU3oA2gWR0CTWyCo0hvBdX2UKGgGaAloD0MI9dvXgXMG+T+UhpRSlGgVTegDaBZHQJNcJWBBiTd1fZQoaAZoCWgPQwh+GCE82qVdQJSGlFKUaBVN6ANoFkdAk1xnv2GqP3V9lChoBmgJaA9DCBqnIarwqV1AlIaUUpRoFU3oA2gWR0CTdQ593KSxdX2UKGgGaAloD0MIxTpVvmetZUCUhpRSlGgVTegDaBZHQJN39MwlByF1fZQoaAZoCWgPQwjv/+OECTsiQJSGlFKUaBVNEAFoFkdAk3szoZAIIHV9lChoBmgJaA9DCF71gHlIbWFAlIaUUpRoFU3oA2gWR0CTfakn1FpgdX2UKGgGaAloD0MInDbjNEQdR0CUhpRSlGgVTegDaBZHQJOFV+UhV2l1fZQoaAZoCWgPQwgCnN7F+4FcQJSGlFKUaBVN6ANoFkdAk4yg7LdN4HV9lChoBmgJaA9DCC4AjdIldmBAlIaUUpRoFU3oA2gWR0CTjMewLVnVdX2UKGgGaAloD0MIt7JEZ5lFC0CUhpRSlGgVTRABaBZHQJOPRLzwtrd1fZQoaAZoCWgPQwjspSkCnI4nQJSGlFKUaBVLsGgWR0CTkML61stTdX2UKGgGaAloD0MIe4LEdvdcZECUhpRSlGgVTegDaBZHQJOTBSxZ+x51fZQoaAZoCWgPQwjBU8iVekhfQJSGlFKUaBVN6ANoFkdAk5yLbxmTT3V9lChoBmgJaA9DCFnDRe7p6V5AlIaUUpRoFU3oA2gWR0CTnK56MR6GdX2UKGgGaAloD0MIBiy5isWPN0CUhpRSlGgVTRkBaBZHQJOduAMDwH91fZQoaAZoCWgPQwisHjAPmVhbQJSGlFKUaBVN6ANoFkdAk6Lq8DjioHV9lChoBmgJaA9DCK38MhgjVkVAlIaUUpRoFU3oA2gWR0CTqPq2SdOJdX2UKGgGaAloD0MIXoWUn9RkY0CUhpRSlGgVTegDaBZHQJOpLhUBGQV1fZQoaAZoCWgPQwj1udqK/XZaQJSGlFKUaBVN6ANoFkdAk6lP2saKk3V9lChoBmgJaA9DCH1Z2qm5uldAlIaUUpRoFU3oA2gWR0CTqlv2GqPwdX2UKGgGaAloD0MIX5fhP91AXECUhpRSlGgVTegDaBZHQJOqnk2gnMN1fZQoaAZoCWgPQwhwYHKjyMIoQJSGlFKUaBVL+WgWR0CTq8y6+WWydX2UKGgGaAloD0MI/HH75ZOlIcCUhpRSlGgVTSIBaBZHQJPAzVI7Njd1fZQoaAZoCWgPQwhq3Qa134JgQJSGlFKUaBVN6ANoFkdAk8LSNXHR1HV9lChoBmgJaA9DCB5QNuUK4zVAlIaUUpRoFU0AAWgWR0CTw0EhaC+UdX2UKGgGaAloD0MIOKJ71jWSIECUhpRSlGgVS9BoFkdAk8VPt+kP+XV9lChoBmgJaA9DCOFGyhbJSWBAlIaUUpRoFU3oA2gWR0CTxY6DXe3ydX2UKGgGaAloD0MIxk0NNJ9z1T+UhpRSlGgVS9hoFkdAk8ghoqTbFnV9lChoBmgJaA9DCL2L9+P25FpAlIaUUpRoFU3oA2gWR0CTyC5OafBfdX2UKGgGaAloD0MI/p3t0Rs+QkCUhpRSlGgVTQUBaBZHQJPStkvsZ511fZQoaAZoCWgPQwjOwwlMp15bQJSGlFKUaBVN6ANoFkdAk9caguh9LHV9lChoBmgJaA9DCKryPSMRomRAlIaUUpRoFU3oA2gWR0CT2aS3b212dX2UKGgGaAloD0MIoE/kSdKoXECUhpRSlGgVTegDaBZHQJPbKfNA1Nx1fZQoaAZoCWgPQwhzgGCOHk1eQJSGlFKUaBVN6ANoFkdAk91n+ERJ3HV9lChoBmgJaA9DCP2Es1vLx2NAlIaUUpRoFU3oA2gWR0CT5xc9GI9DdX2UKGgGaAloD0MIHuBJC5fOVkCUhpRSlGgVTegDaBZHQJP0kV2zOX51fZQoaAZoCWgPQwghH/Rs1nRiQJSGlFKUaBVN6ANoFkdAk/S2sV+I/XV9lChoBmgJaA9DCBNjmX6Jl1pAlIaUUpRoFU3oA2gWR0CT9hAk9lmOdX2UKGgGaAloD0MImSmtvyXqYkCUhpRSlGgVTegDaBZHQJP2X0L+glF1fZQoaAZoCWgPQwj3deCcEb0swJSGlFKUaBVNAwFoFkdAk/g3Ux20RnV9lChoBmgJaA9DCJtUNNZ+CGBAlIaUUpRoFU3oA2gWR0CUDS+IuXeFdX2UKGgGaAloD0MIjX3JxoMFWkCUhpRSlGgVTegDaBZHQJQPU2pAD7t1fZQoaAZoCWgPQwhpO6buykRdQJSGlFKUaBVN6ANoFkdAlA/G0eEIxHV9lChoBmgJaA9DCMUAiSZQAEFAlIaUUpRoFUu1aBZHQJQQz7SApa11fZQoaAZoCWgPQwidZoF2BwpgQJSGlFKUaBVN6ANoFkdAlBHO/gzguXV9lChoBmgJaA9DCN/gC5OpTGBAlIaUUpRoFU3oA2gWR0CUFK/n4fwJdX2UKGgGaAloD0MINnSzP1DTWkCUhpRSlGgVTegDaBZHQJQUvJyQxN91fZQoaAZoCWgPQwjj3ZGx2mA8QJSGlFKUaBVLwGgWR0CUGzCl7+kydX2UKGgGaAloD0MIfjmzXSFFZUCUhpRSlGgVTegDaBZHQJQfrtsvZh91fZQoaAZoCWgPQwjW5ZSAmMT4v5SGlFKUaBVNDwFoFkdAlCQ7GaQV9HV9lChoBmgJaA9DCJ8cBYgCAGBAlIaUUpRoFU3oA2gWR0CUJFzwc5sCdX2UKGgGaAloD0MI323eOCnTV0CUhpRSlGgVTegDaBZHQJQnCIznA7B1fZQoaAZoCWgPQwgH0zB8xEhiQJSGlFKUaBVN6ANoFkdAlCiJwS8J2XV9lChoBmgJaA9DCGXHRiBeIGBAlIaUUpRoFU3oA2gWR0CUKqReC04SdX2UKGgGaAloD0MIGlJF8SqFQ0CUhpRSlGgVTREBaBZHQJQ5jDm8ujB1fZQoaAZoCWgPQwgPKJtyhZ9HQJSGlFKUaBVNHQFoFkdAlDzy+cpb2XV9lChoBmgJaA9DCBWMSuoEFmRAlIaUUpRoFU3oA2gWR0CUQevKU3XJdX2UKGgGaAloD0MI/ilVouxZXECUhpRSlGgVTegDaBZHQJRDTwLE1l51fZQoaAZoCWgPQwhBu0OKASJkQJSGlFKUaBVN6ANoFkdAlEOh7qptJnV9lChoBmgJaA9DCGechqjCWGVAlIaUUpRoFU3oA2gWR0CURYsfq5bydX2UKGgGaAloD0MIvOtsyD9ZX0CUhpRSlGgVTegDaBZHQJRa5NSIgvF1fZQoaAZoCWgPQwjDLooe+EVhQJSGlFKUaBVN6ANoFkdAlF1DzI3irHV9lChoBmgJaA9DCH7JxoMtd11AlIaUUpRoFU3oA2gWR0CUXcbVSXMRdX2UKGgGaAloD0MIYW9iSE7SXUCUhpRSlGgVTegDaBZHQJRe96Y3Ns51fZQoaAZoCWgPQwgXoG0162ZkQJSGlFKUaBVN6ANoFkdAlGOS5RTCL3V9lChoBmgJaA9DCIrlllZDMEZAlIaUUpRoFUv5aBZHQJRkCGcnVoZ1fZQoaAZoCWgPQwj75ZMVQ8lhQJSGlFKUaBVN6ANoFkdAlGt4JAt4A3V9lChoBmgJaA9DCBkD6zh+O2NAlIaUUpRoFU3oA2gWR0CUcIm3OObRdX2UKGgGaAloD0MIQWK7e4AOFECUhpRSlGgVTTMBaBZHQJRxyOJcgQp1fZQoaAZoCWgPQwjcSNkiaT5mQJSGlFKUaBVN6ANoFkdAlHUBBzFMqXV9lChoBmgJaA9DCCI3ww34yWFAlIaUUpRoFU3oA2gWR0CUdSM4LkS3dX2UKGgGaAloD0MIYDqt26CIXkCUhpRSlGgVTegDaBZHQJR3obhm5Dt1fZQoaAZoCWgPQwi1p+Sc2Fs9wJSGlFKUaBVL7WgWR0CUetyp71IzdX2UKGgGaAloD0MIvajdrwIwXUCUhpRSlGgVTegDaBZHQJSMUlnh86V1fZQoaAZoCWgPQwgfZi/bzvpiQJSGlFKUaBVN6ANoFkdAlI/3BguyvHV9lChoBmgJaA9DCKTH7216bGFAlIaUUpRoFU3oA2gWR0CUlWNhE0BPdX2UKGgGaAloD0MIXyhgO5jIYUCUhpRSlGgVTegDaBZHQJSW8a3qiXZ1fZQoaAZoCWgPQwgSMLq8OVFhQJSGlFKUaBVN6ANoFkdAlJmZng5zYHV9lChoBmgJaA9DCI4iaw2lbmBAlIaUUpRoFU3oA2gWR0CUnPsLORkmdX2UKGgGaAloD0MIEYsYdpjnZUCUhpRSlGgVTegDaBZHQJSx7XBguyx1fZQoaAZoCWgPQwh87ZklAW9kQJSGlFKUaBVN6ANoFkdAlLJ3X7Lt/nV9lChoBmgJaA9DCAbX3NF/dmVAlIaUUpRoFU3oA2gWR0CUuHjbi6xxdX2UKGgGaAloD0MIo+ar5GMBYkCUhpRSlGgVTegDaBZHQJS485n13+x1fZQoaAZoCWgPQwgI5ujxe8sQQJSGlFKUaBVL/2gWR0CUuQJaJQ+EdX2UKGgGaAloD0MIucSRByLeYkCUhpRSlGgVTegDaBZHQJTEZ5t3wCt1fZQoaAZoCWgPQwh88rBQa4BeQJSGlFKUaBVN6ANoFkdAlMWbSuyNXHV9lChoBmgJaA9DCKpla32RDGVAlIaUUpRoFU3oA2gWR0CUyJOMl1KXdX2UKGgGaAloD0MIObnfoSiSX0CUhpRSlGgVTegDaBZHQJTIsefZmI11fZQoaAZoCWgPQwiA8+LE1z9hQJSGlFKUaBVN6ANoFkdAlMsLSZ0CBHV9lChoBmgJaA9DCPrsgOuKJlhAlIaUUpRoFU3oA2gWR0CUzfouPFNtdX2UKGgGaAloD0MIg2kYPqKpYECUhpRSlGgVTegDaBZHQJTdMmiQDFJ1fZQoaAZoCWgPQwi6aTNOw8lgQJSGlFKUaBVN6ANoFkdAlOB3f/FR53V9lChoBmgJaA9DCKbydoRTlGBAlIaUUpRoFU3oA2gWR0CU5Tya/h2odX2UKGgGaAloD0MIUFCKVm7jZECUhpRSlGgVTegDaBZHQJTpcMSbpeN1fZQoaAZoCWgPQwgS+MPPfy9jQJSGlFKUaBVN6ANoFkdAlO0BXnyNGXV9lChoBmgJaA9DCEgyq3e47ldAlIaUUpRoFU3oA2gWR0CU771RtP56dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |