File size: 15,977 Bytes
9bfa38b
 
 
5719315
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
bc17d53
5719315
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
 
 
 
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
 
 
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
 
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
 
 
 
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
 
 
5719315
 
 
 
2bcb8f4
b76b053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb27769
5719315
 
 
 
 
 
cb27769
2bcb8f4
5719315
b76b053
 
 
 
 
 
9bfa38b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
---
license: apache-2.0
---
# LiteLlama

It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.  

**Model Intention:** This is a 460 parameters' very small model for test purpose only  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)  

**Model License:** [License Info](https://ai.meta.com/llama/license/)  

**Model Description:** It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.  

**Developer:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)  

**File Size:** 493 MB  

**Context Length:** 1024 tokens  

**Prompt Format:** 

```
<human>: {{prompt}}
<bot>:
```

**Template Name:** TinyLlama  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# TinyLlama-1.1B-chat

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.  

**Model Intention:** It's good for question & answer.  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)  

**Model License:** [License Info](https://ai.meta.com/llama/license/)  

**Model Description:** The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.  

**Developer:** [https://github.com/jzhang38/TinyLlama](https://github.com/jzhang38/TinyLlama)  

**File Size:** 1170 MB  

**Context Length:** 4096 tokens  

**Prompt Format:** 

```
<|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>
```

**Template Name:** TinyLlama  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# Mistral 7B v0.2

The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.  

**Model Intention:** It's a 7B large model for Q&A purpose. But it requires a high-end device to run.  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)  

**Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)  

**Model Description:** The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.  

**Developer:** [https://mistral.ai/](https://mistral.ai/)  

**File Size:** 7695 MB  

**Context Length:** 4096 tokens  

**Prompt Format:** 

```
<s>[INST]{{prompt}}[/INST]</s>
```

**Template Name:** Mistral  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# OpenChat 3.5

OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.  

**Model Intention:** It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)  

**Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)  

**Model Description:** OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.  

**Developer:** [https://openchat.team/](https://openchat.team/)  

**File Size:** 7695 MB  

**Context Length:** 4096 tokens  

**Prompt Format:** 

```
<s>[INST]{{prompt}}[/INST]</s>
```

**Template Name:** Mistral  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# Phi-2

Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.  

**Model Intention:** It's a 2.7B model and is intended for QA, chat, and code purposes  

**Model URL:** [https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true](https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)  

**Model License:** [License Info](https://opensource.org/license/mit)  

**Model Description:** Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.  

**Developer:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)  

**File Size:** 2960 MB  

**Context Length:** 4096 tokens  

**Prompt Format:** 

```
Instruct: {{prompt}}
Output:
```

**Template Name:** PHI  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# Yi 6B Chat

The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.  

**Model Intention:** It's a 6B model and can understand English and Chinese. It's good for QA and Chat  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)  

**Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)  

**Model Description:** The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.  

**Developer:** [https://01.ai/](https://01.ai/)  

**File Size:** 6440 MB  

**Context Length:** 200000 tokens  

**Prompt Format:** 

```
<|im_start|>user
<|im_end|>
{{prompt}}
<|im_start|>assistant

```

**Template Name:** yi  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# Google Gemma 2B

Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).  

**Model Intention:** It's a 2B large model for Q&A purpose. But it requires a high-end device to run.  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/google/gemma-2b](https://huggingface.co/google/gemma-2b)  

**Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)  

**Model Description:** Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).  

**Developer:** [https://huggingface.co/google](https://huggingface.co/google)  

**File Size:** 2669 MB  

**Context Length:** 8192 tokens  

**Prompt Format:** 

```
<bos><start_of_turn>user
{{prompt}}<end_of_turn>
<start_of_turn>model

```

**Template Name:** gemma  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# StarCoder2 3B

StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens  

**Model Intention:** The model is good at 17 programming languages. It can help you resolve programming requirements  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b)  

**Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)  

**Model Description:** StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens  

**Developer:** [https://www.bigcode-project.org/](https://www.bigcode-project.org/)  

**File Size:** 3220 MB  

**Context Length:** 8192 tokens  

**Prompt Format:** 

```
### Instruction
{{prompt}}### Response

```

**Template Name:** starcoder  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# Chinese Tiny LLM 2B

Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。  

**Model Intention:** 这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true)  

**Model Info URL:** [https://chinese-tiny-llm.github.io/](https://chinese-tiny-llm.github.io/)  

**Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)  

**Model Description:** Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。  

**Developer:** [https://m-a-p.ai/](https://m-a-p.ai/)  

**File Size:** 2218 MB  

**Context Length:** 4096 tokens  

**Prompt Format:** 

```
<|im_start|>user
{{prompt}}
<|im_end|>
<|im_start|>assistant

```

**Template Name:** chatml  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes  


---

# Dophin 2.8 Mistralv02 7B

This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.  

**Model Intention:** It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac  

**Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true)  

**Model Info URL:** [https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)  

**Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)  

**Model Description:** This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.  

**Developer:** [https://erichartford.com/](https://erichartford.com/)  

**File Size:** 2728 MB  

**Context Length:** 16384 tokens  

**Prompt Format:** 

```
<|im_start|>user
{{prompt}}
<|im_end|>
<|im_start|>assistant

```

**Template Name:** chatml  

**Add BOS Token:** Yes  

**Add EOS Token:** No  

**Parse Special Tokens:** Yes